Mengoptimalkan Performa

Saat menulis aturan, kesalahan performa yang paling umum adalah melintasi atau menyalin data yang dikumpulkan dari dependensi. Jika digabungkan di seluruh build, operasi ini dapat dengan mudah memerlukan waktu atau ruang O(N^2). Untuk menghindarinya, Anda harus memahami cara menggunakan depsets secara efektif.

Hal ini mungkin sulit dilakukan dengan benar, jadi Bazel juga menyediakan profiler memori yang membantu Anda menemukan tempat yang mungkin salah. Perhatikan: Biaya penulisan aturan yang tidak efisien mungkin tidak terlihat hingga aturan tersebut digunakan secara luas.

Menggunakan depset

Setiap kali Anda menggabungkan informasi dari dependensi aturan, Anda harus menggunakan depset. Hanya gunakan daftar atau dict biasa untuk memublikasikan informasi lokal ke aturan saat ini.

Depset merepresentasikan informasi sebagai grafik bertingkat yang memungkinkan berbagi.

Pertimbangkan grafik berikut:

C -> B -> A
D ---^

Setiap node memublikasikan satu string. Dengan depsets, data akan terlihat seperti ini:

a = depset(direct=['a'])
b = depset(direct=['b'], transitive=[a])
c = depset(direct=['c'], transitive=[b])
d = depset(direct=['d'], transitive=[b])

Perhatikan bahwa setiap item hanya disebutkan satu kali. Dengan daftar, Anda akan mendapatkan ini:

a = ['a']
b = ['b', 'a']
c = ['c', 'b', 'a']
d = ['d', 'b', 'a']

Perhatikan bahwa dalam kasus ini, 'a' disebutkan empat kali. Dengan grafik yang lebih besar, masalah ini hanya akan bertambah parah.

Berikut adalah contoh penerapan aturan yang menggunakan depsets dengan benar untuk memublikasikan informasi transitif. Perhatikan bahwa Anda dapat memublikasikan informasi lokal aturan menggunakan daftar jika Anda mau karena ini bukan O(N^2).

MyProvider = provider()

def _impl(ctx):
  my_things = ctx.attr.things
  all_things = depset(
      direct=my_things,
      transitive=[dep[MyProvider].all_things for dep in ctx.attr.deps]
  )
  ...
  return [MyProvider(
    my_things=my_things,  # OK, a flat list of rule-local things only
    all_things=all_things,  # OK, a depset containing dependencies
  )]

Lihat halaman ringkasan depset untuk mengetahui informasi selengkapnya.

Hindari memanggil depset.to_list()

Anda dapat memaksa depset menjadi daftar datar menggunakan to_list(), tetapi melakukannya biasanya menghasilkan biaya O(N^2). Jika memungkinkan, hindari perataan depsets kecuali untuk tujuan penelusuran bug.

Kesalahpahaman umum adalah Anda dapat meratakan depsets secara bebas jika Anda hanya melakukannya di target tingkat teratas, seperti aturan <xx>_binary, karena biaya tidak diakumulasikan di setiap tingkat grafik build. Namun, hal ini tetap O(N^2) saat Anda membuat sekumpulan target dengan dependensi yang tumpang-tindih. Hal ini terjadi saat membangun pengujian //foo/tests/..., atau saat mengimpor project IDE.

Mengurangi jumlah panggilan ke depset

Memanggil depset di dalam loop sering kali merupakan kesalahan. Hal ini dapat menyebabkan depsets dengan nesting yang sangat dalam, yang performanya buruk. Contoh:

x = depset()
for i in inputs:
    # Do not do that.
    x = depset(transitive = [x, i.deps])

Kode ini dapat diganti dengan mudah. Pertama, kumpulkan depsets transitif dan gabungkan semuanya sekaligus:

transitive = []

for i in inputs:
    transitive.append(i.deps)

x = depset(transitive = transitive)

Hal ini terkadang dapat dikurangi menggunakan pemahaman daftar:

x = depset(transitive = [i.deps for i in inputs])

Gunakan ctx.actions.args() untuk command line

Saat membuat command line, Anda harus menggunakan ctx.actions.args(). Hal ini menunda perluasan depsets ke fase eksekusi.

Selain lebih cepat, hal ini akan mengurangi konsumsi memori aturan Anda -- terkadang hingga 90% atau lebih.

Berikut beberapa triknya:

  • Teruskan depsets dan daftar secara langsung sebagai argumen, alih-alih meratakannya sendiri. ctx.actions.args() akan memperluasnya untuk Anda. Jika Anda memerlukan transformasi apa pun pada konten depset, lihat ctx.actions.args#add untuk melihat apakah ada yang sesuai.

  • Apakah Anda meneruskan File#path sebagai argumen? Tidak perlu. File apa pun akan otomatis diubah menjadi jalurnya, yang ditangguhkan ke waktu ekspansi.

  • Hindari membuat string dengan menggabungkannya. Argumen string terbaik adalah konstanta karena memorinya akan dibagikan di antara semua instance aturan Anda.

  • Jika argumen terlalu panjang untuk command line, objek ctx.actions.args() dapat ditulis secara bersyarat atau tanpa syarat ke file param menggunakan ctx.actions.args#use_param_file. Tindakan ini dilakukan di balik layar saat tindakan dijalankan. Jika perlu mengontrol file parameter secara eksplisit, Anda dapat menulisnya secara manual menggunakan ctx.actions.write.

Contoh:

def _impl(ctx):
  ...
  args = ctx.actions.args()
  file = ctx.declare_file(...)
  files = depset(...)

  # Bad, constructs a full string "--foo=<file path>" for each rule instance
  args.add("--foo=" + file.path)

  # Good, shares "--foo" among all rule instances, and defers file.path to later
  # It will however pass ["--foo", <file path>] to the action command line,
  # instead of ["--foo=<file_path>"]
  args.add("--foo", file)

  # Use format if you prefer ["--foo=<file path>"] to ["--foo", <file path>]
  args.add(format="--foo=%s", value=file)

  # Bad, makes a giant string of a whole depset
  args.add(" ".join(["-I%s" % file.short_path for file in files])

  # Good, only stores a reference to the depset
  args.add_all(files, format_each="-I%s", map_each=_to_short_path)

# Function passed to map_each above
def _to_short_path(f):
  return f.short_path

Input tindakan transitif harus berupa depsets

Saat membuat tindakan menggunakan ctx.actions.run, jangan lupa bahwa kolom inputs menerima depset. Gunakan ini setiap kali input dikumpulkan dari dependensi secara transitif.

inputs = depset(...)
ctx.actions.run(
  inputs = inputs,  # Do *not* turn inputs into a list
  ...
)

Menggantung

Jika Bazel tampak macet, Anda dapat menekan Ctrl-\ atau mengirim sinyal SIGQUIT (kill -3 $(bazel info server_pid)) ke Bazel untuk mendapatkan thread dump dalam file $(bazel info output_base)/server/jvm.out.

Karena Anda mungkin tidak dapat menjalankan bazel info jika bazel macet, direktori output_base biasanya merupakan induk dari link simbolis bazel-<workspace> di direktori ruang kerja Anda.

Profiling performa

Bazel menulis profil JSON ke command.profile.gz di dasar output secara default. Anda dapat mengonfigurasi lokasi dengan flag --profile, misalnya --profile=/tmp/profile.gz. Lokasi yang diakhiri dengan .gz dikompresi dengan GZIP.

Untuk melihat hasilnya, buka chrome://tracing di tab browser Chrome, klik "Muat", lalu pilih file profil (yang mungkin dikompresi). Untuk hasil yang lebih mendetail, klik kotak di pojok kiri bawah.

Anda dapat menggunakan kontrol keyboard berikut untuk menjelajah:

  • Tekan 1 untuk mode "pilih". Dalam mode ini, Anda dapat memilih kotak tertentu untuk memeriksa detail peristiwa (lihat sudut kiri bawah). Pilih beberapa acara untuk mendapatkan ringkasan dan statistik gabungan.
  • Tekan 2 untuk mode "geser". Kemudian, tarik mouse untuk memindahkan tampilan. Anda juga dapat menggunakan a/d untuk berpindah ke kiri/kanan.
  • Tekan 3 untuk mode "zoom". Kemudian, tarik mouse untuk melakukan zoom. Anda juga dapat menggunakan w/s untuk memperbesar/memperkecil.
  • Tekan 4 untuk mode "pengaturan waktu" tempat Anda dapat mengukur jarak antara dua peristiwa.
  • Tekan ? untuk mempelajari semua kontrol.

Informasi profil

Contoh profil:

Contoh profil

Gambar 1. Contoh profil.

Ada beberapa baris khusus:

  • action counters: Menampilkan jumlah tindakan serentak yang sedang berlangsung. Klik untuk melihat nilai sebenarnya. Harus sama dengan nilai --jobs dalam build bersih.
  • cpu counters: Untuk setiap detik build, menampilkan jumlah CPU yang digunakan oleh Bazel (nilai 1 sama dengan satu core yang 100% sibuk).
  • Critical Path: Menampilkan satu blok untuk setiap tindakan di jalur kritis.
  • grpc-command-1: Thread utama Bazel. Berguna untuk mendapatkan gambaran umum tentang tindakan yang dilakukan Bazel, misalnya "Launch Bazel", "evaluateTargetPatterns", dan "runAnalysisPhase".
  • Service Thread: Menampilkan jeda Pengumpulan Sampah (GC) kecil dan besar.

Baris lainnya mewakili thread Bazel dan menampilkan semua peristiwa di thread tersebut.

Masalah performa umum

Saat menganalisis profil performa, cari:

  • Fase analisis yang lebih lambat dari yang diharapkan (runAnalysisPhase), terutama pada build inkremental. Hal ini dapat menjadi tanda penerapan aturan yang buruk, misalnya, aturan yang meratakan depsets. Pemuatan paket dapat menjadi lambat karena jumlah target yang berlebihan, makro yang kompleks, atau glob rekursif.
  • Tindakan lambat individual, terutama yang berada di jalur kritis. Anda dapat membagi tindakan besar menjadi beberapa tindakan yang lebih kecil atau mengurangi set dependensi (transitif) untuk mempercepatnya. Periksa juga apakah ada non-PROCESS_TIME tinggi yang tidak biasa (seperti REMOTE_SETUP atau FETCH).
  • Hambatan, yaitu sejumlah kecil thread sibuk sementara semua thread lainnya menganggur / menunggu hasil (lihat sekitar 15-30 detik pada screenshot di atas). Mengoptimalkan hal ini kemungkinan besar memerlukan perubahan pada penerapan aturan atau Bazel itu sendiri untuk memperkenalkan lebih banyak paralelisme. Hal ini juga dapat terjadi jika ada jumlah GC yang tidak biasa.

Format file profil

Objek tingkat teratas berisi metadata (otherData) dan data pelacakan sebenarnya (traceEvents). Metadata berisi info tambahan, misalnya ID pemanggilan dan tanggal pemanggilan Bazel.

Contoh:

{
  "otherData": {
    "build_id": "101bff9a-7243-4c1a-8503-9dc6ae4c3b05",
    "date": "Tue Jun 16 08:30:21 CEST 2020",
    "output_base": "/usr/local/google/_bazel_johndoe/573d4be77eaa72b91a3dfaa497bf8cd0"
  },
  "traceEvents": [
    {"name":"thread_name","ph":"M","pid":1,"tid":0,"args":{"name":"Critical Path"}},
    {"cat":"build phase marker","name":"Launch Bazel","ph":"X","ts":-1824000,"dur":1824000,"pid":1,"tid":60},
    ...
    {"cat":"general information","name":"NoSpawnCacheModule.beforeCommand","ph":"X","ts":116461,"dur":419,"pid":1,"tid":60},
    ...
    {"cat":"package creation","name":"src","ph":"X","ts":279844,"dur":15479,"pid":1,"tid":838},
    ...
    {"name":"thread_name","ph":"M","pid":1,"tid":11,"args":{"name":"Service Thread"}},
    {"cat":"gc notification","name":"minor GC","ph":"X","ts":334626,"dur":13000,"pid":1,"tid":11},

    ...
    {"cat":"action processing","name":"Compiling third_party/grpc/src/core/lib/transport/status_conversion.cc","ph":"X","ts":12630845,"dur":136644,"pid":1,"tid":1546}
 ]
}

Stempel waktu (ts) dan durasi (dur) dalam peristiwa rekaman aktivitas diberikan dalam mikrodetik. Kategori (cat) adalah salah satu nilai enum ProfilerTask. Perhatikan bahwa beberapa peristiwa digabungkan jika durasinya sangat singkat dan berdekatan satu sama lain; teruskan --noslim_json_profile jika Anda ingin mencegah penggabungan peristiwa.

Lihat juga Spesifikasi Format Peristiwa Perekaman Aktivitas Chrome.

analyze-profile

Metode pembuatan profil ini terdiri dari dua langkah, pertama Anda harus menjalankan build/pengujian dengan tanda --profile, misalnya

$ bazel build --profile=/tmp/prof //path/to:target

File yang dihasilkan (dalam hal ini /tmp/prof) adalah file biner, yang dapat diproses pasca dan dianalisis oleh perintah analyze-profile:

$ bazel analyze-profile /tmp/prof

Secara default, perintah ini mencetak informasi analisis ringkasan untuk file data profil yang ditentukan. Hal ini mencakup statistik kumulatif untuk berbagai jenis tugas untuk setiap fase build dan analisis jalur kritis.

Bagian pertama dari output default adalah ringkasan waktu yang dihabiskan untuk berbagai fase build:

INFO: Profile created on Tue Jun 16 08:59:40 CEST 2020, build ID: 0589419c-738b-4676-a374-18f7bbc7ac23, output base: /home/johndoe/.cache/bazel/_bazel_johndoe/d8eb7a85967b22409442664d380222c0

=== PHASE SUMMARY INFORMATION ===

Total launch phase time         1.070 s   12.95%
Total init phase time           0.299 s    3.62%
Total loading phase time        0.878 s   10.64%
Total analysis phase time       1.319 s   15.98%
Total preparation phase time    0.047 s    0.57%
Total execution phase time      4.629 s   56.05%
Total finish phase time         0.014 s    0.18%
------------------------------------------------
Total run time                  8.260 s  100.00%

Critical path (4.245 s):
       Time Percentage   Description
    8.85 ms    0.21%   _Ccompiler_Udeps for @local_config_cc// compiler_deps
    3.839 s   90.44%   action 'Compiling external/com_google_protobuf/src/google/protobuf/compiler/php/php_generator.cc [for host]'
     270 ms    6.36%   action 'Linking external/com_google_protobuf/protoc [for host]'
    0.25 ms    0.01%   runfiles for @com_google_protobuf// protoc
     126 ms    2.97%   action 'ProtoCompile external/com_google_protobuf/python/google/protobuf/compiler/plugin_pb2.py'
    0.96 ms    0.02%   runfiles for //tools/aquery_differ aquery_differ

Pembuatan profil memori

Bazel dilengkapi dengan profiler memori bawaan yang dapat membantu Anda memeriksa penggunaan memori aturan. Jika ada masalah, Anda dapat membuang heap untuk menemukan baris kode yang tepat yang menyebabkan masalah.

Mengaktifkan pelacakan memori

Anda harus meneruskan dua tanda pengaktifan ini ke setiap pemanggilan Bazel:

  STARTUP_FLAGS=\
  --host_jvm_args=-javaagent:$(BAZEL)/third_party/allocation_instrumenter/java-allocation-instrumenter-3.3.0.jar \
  --host_jvm_args=-DRULE_MEMORY_TRACKER=1

Perintah ini memulai server dalam mode pelacakan memori. Jika Anda melupakannya bahkan untuk satu pemanggilan Bazel, server akan dimulai ulang dan Anda harus memulai dari awal.

Menggunakan Pelacak Memori

Sebagai contoh, lihat target foo dan lihat fungsinya. Untuk hanya menjalankan analisis dan tidak menjalankan fase eksekusi build, tambahkan flag --nobuild.

$ bazel $(STARTUP_FLAGS) build --nobuild //foo:foo

Selanjutnya, lihat berapa banyak memori yang digunakan seluruh instance Bazel:

$ bazel $(STARTUP_FLAGS) info used-heap-size-after-gc
> 2594MB

Pisahkan menurut class aturan menggunakan bazel dump --rules:

$ bazel $(STARTUP_FLAGS) dump --rules
>

RULE                                 COUNT     ACTIONS          BYTES         EACH
genrule                             33,762      33,801    291,538,824        8,635
config_setting                      25,374           0     24,897,336          981
filegroup                           25,369      25,369     97,496,272        3,843
cc_library                           5,372      73,235    182,214,456       33,919
proto_library                        4,140     110,409    186,776,864       45,115
android_library                      2,621      36,921    218,504,848       83,366
java_library                         2,371      12,459     38,841,000       16,381
_gen_source                            719       2,157      9,195,312       12,789
_check_proto_library_deps              719         668      1,835,288        2,552
... (more output)

Lihat ke mana memori akan dialokasikan dengan membuat file pprof menggunakan bazel dump --skylark_memory:

$ bazel $(STARTUP_FLAGS) dump --skylark_memory=$HOME/prof.gz
> Dumping Starlark heap to: /usr/local/google/home/$USER/prof.gz

Gunakan alat pprof untuk menyelidiki heap. Titik awal yang baik adalah mendapatkan grafik aktivitas dengan menggunakan pprof -flame $HOME/prof.gz.

Dapatkan pprof dari https://github.com/google/pprof.

Mendapatkan dump teks situs panggilan terpopuler yang diberi anotasi dengan baris:

$ pprof -text -lines $HOME/prof.gz
>
      flat  flat%   sum%        cum   cum%
  146.11MB 19.64% 19.64%   146.11MB 19.64%  android_library <native>:-1
  113.02MB 15.19% 34.83%   113.02MB 15.19%  genrule <native>:-1
   74.11MB  9.96% 44.80%    74.11MB  9.96%  glob <native>:-1
   55.98MB  7.53% 52.32%    55.98MB  7.53%  filegroup <native>:-1
   53.44MB  7.18% 59.51%    53.44MB  7.18%  sh_test <native>:-1
   26.55MB  3.57% 63.07%    26.55MB  3.57%  _generate_foo_files /foo/tc/tc.bzl:491
   26.01MB  3.50% 66.57%    26.01MB  3.50%  _build_foo_impl /foo/build_test.bzl:78
   22.01MB  2.96% 69.53%    22.01MB  2.96%  _build_foo_impl /foo/build_test.bzl:73
   ... (more output)