Saat menulis aturan, kesalahan performa yang paling umum adalah melewati atau menyalin data yang dikumpulkan dari dependensi. Ketika digabungkan secara keseluruhan operasi ini bisa dengan mudah memakan waktu atau ruang O(N^2). Untuk menghindari hal ini, penting untuk memahami cara menggunakan {i>depset <i}secara efektif.
Hal ini mungkin sulit untuk dilakukan dengan benar, jadi Bazel juga menyediakan {i>memory profiler<i} yang membantu Anda menemukan titik di mana Anda mungkin telah melakukan kesalahan. Hati-hati: Biaya penulisan aturan yang tidak efisien mungkin tidak akan terlihat sampai aturan itu digunakan secara luas.
Menggunakan depset
Setiap kali Anda meluncurkan informasi dari dependensi aturan, Anda harus menggunakan depset. Hanya gunakan daftar atau dikte biasa untuk memublikasikan informasi lokal pada aturan saat ini.
Depset mewakili informasi sebagai grafik bertingkat yang memungkinkan pembagian.
Perhatikan grafik berikut:
C -> B -> A
D ---^
Setiap node memublikasikan satu string. Dengan depset, data akan terlihat seperti ini:
a = depset(direct=['a'])
b = depset(direct=['b'], transitive=[a])
c = depset(direct=['c'], transitive=[b])
d = depset(direct=['d'], transitive=[b])
Perlu diperhatikan bahwa setiap item hanya disebutkan satu kali. Dengan daftar, Anda akan mendapatkan ini:
a = ['a']
b = ['b', 'a']
c = ['c', 'b', 'a']
d = ['d', 'b', 'a']
Perhatikan bahwa dalam kasus ini, 'a'
disebutkan empat kali. Dengan grafik yang lebih besar,
masalah justru akan
menjadi lebih buruk.
Berikut adalah contoh penerapan aturan yang menggunakan depset dengan benar untuk memublikasikan informasi transitif. Perhatikan bahwa Anda dapat memublikasikan aturan-lokal informasi menggunakan daftar jika Anda mau karena ini bukan O(N^2).
MyProvider = provider()
def _impl(ctx):
my_things = ctx.attr.things
all_things = depset(
direct=my_things,
transitive=[dep[MyProvider].all_things for dep in ctx.attr.deps]
)
...
return [MyProvider(
my_things=my_things, # OK, a flat list of rule-local things only
all_things=all_things, # OK, a depset containing dependencies
)]
Lihat halaman ringkasan depset untuk informasi selengkapnya.
Hindari memanggil depset.to_list()
Anda dapat memaksa depset ke daftar datar menggunakan
to_list()
, tetapi melakukan hal itu biasanya menghasilkan O(N^2)
jarang diakses untuk
mengurangi biaya penyimpanan. Jika memungkinkan, hindari perataan depset kecuali untuk proses debug
tujuan.
Kesalahpahaman yang umum adalah Anda dapat dengan bebas meratakan depset jika Anda hanya melakukannya
pada target tingkat teratas, seperti aturan <xx>_binary
, karena biayanya menjadi tidak
terakumulasi di setiap level grafik build. Namun, nilai ini masih O(N^2) saat
Anda membuat kumpulan target dengan dependensi yang tumpang tindih. Hal ini terjadi ketika
membangun pengujian //foo/tests/...
, atau saat mengimpor project IDE.
Kurangi jumlah panggilan menjadi depset
Memanggil depset
di dalam loop sering kali merupakan sebuah kesalahan. Hal ini dapat menyebabkan
depset dengan
penyusunan bertingkat yang sangat dalam, yang berperforma buruk. Contoh:
x = depset()
for i in inputs:
# Do not do that.
x = depset(transitive = [x, i.deps])
Kode ini dapat diganti dengan mudah. Pertama, kumpulkan depset transitif dan menggabungkan semuanya sekaligus:
transitive = []
for i in inputs:
transitive.append(i.deps)
x = depset(transitive = transitive)
Hal ini terkadang dapat dikurangi menggunakan pemahaman daftar:
x = depset(transitive = [i.deps for i in inputs])
Menggunakan ctx.actions.args() untuk baris perintah
Saat membuat command line, Anda harus menggunakan ctx.actions.args(). Tindakan ini akan menunda perluasan depset ke fase eksekusi.
Selain menjadi lebih cepat, hal ini akan mengurangi konsumsi memori aturan Anda -- terkadang hingga 90% atau lebih.
Berikut beberapa triknya:
Meneruskan depset dan daftar secara langsung sebagai argumen, bukan meratakannya diri Anda sendiri. Semuanya akan diperluas oleh
ctx.actions.args()
untuk Anda. Jika Anda memerlukan transformasi pada konten depset, lihat ctx.actions.args#add untuk melihat apakah ada yang sesuai dengan anggaran.Apakah Anda meneruskan
File#path
sebagai argumen? Tidak perlu. Apa saja File otomatis diubah menjadi path, ditangguhkan ke waktu ekspansi.Hindari membuat string dengan menggabungkannya. Argumen {i>string <i}terbaik adalah konstanta karena memorinya akan dibagi antara semua instance dari aturan Anda.
Jika argumen terlalu panjang untuk command line, objek
ctx.actions.args()
dapat ditulis dengan bersyarat atau tanpa syarat ke file parameter menggunakanctx.actions.args#use_param_file
. Ini adalah dilakukan di belakang layar ketika tindakan tersebut dijalankan. Jika Anda perlu secara eksplisit mengontrol file params. Anda dapat menulisnya secara manual menggunakanctx.actions.write
Contoh:
def _impl(ctx):
...
args = ctx.actions.args()
file = ctx.declare_file(...)
files = depset(...)
# Bad, constructs a full string "--foo=<file path>" for each rule instance
args.add("--foo=" + file.path)
# Good, shares "--foo" among all rule instances, and defers file.path to later
# It will however pass ["--foo", <file path>] to the action command line,
# instead of ["--foo=<file_path>"]
args.add("--foo", file)
# Use format if you prefer ["--foo=<file path>"] to ["--foo", <file path>]
args.add(format="--foo=%s", value=file)
# Bad, makes a giant string of a whole depset
args.add(" ".join(["-I%s" % file.short_path for file in files])
# Good, only stores a reference to the depset
args.add_all(files, format_each="-I%s", map_each=_to_short_path)
# Function passed to map_each above
def _to_short_path(f):
return f.short_path
Input tindakan transitif harus berupa depset
Saat membuat tindakan menggunakan ctx.actions.run, jangan
lupa bahwa kolom inputs
menerima depset. Gunakan ini setiap kali input
dikumpulkan dari dependensi secara transitif.
inputs = depset(...)
ctx.actions.run(
inputs = inputs, # Do *not* turn inputs into a list
...
)
Gantung
Jika Bazel tampak sedang menggantung, tekan Ctrl-\ atau kirim
Bazel sinyal SIGQUIT
(kill -3 $(bazel info server_pid)
) untuk mendapatkan rangkaian pesan
dump di file $(bazel info output_base)/server/jvm.out
.
Karena Anda mungkin tidak dapat menjalankan bazel info
jika bazel digantung,
Direktori output_base
biasanya merupakan induk dari bazel-<workspace>
symlink di direktori ruang kerja.
Profiling performa
Profil pelacakan JSON bisa sangat berguna untuk memahami dengan cepat waktu yang dihabiskan Bazel selama pemanggilan.
Profiling memori
Bazel dilengkapi dengan profiler memori bawaan yang dapat membantu Anda memeriksa penggunaan memori. Jika ada masalah, Anda bisa membuang heap untuk menemukan baris kode yang tepat yang menyebabkan masalah.
Mengaktifkan pelacakan memori
Anda harus meneruskan dua tanda startup ini ke setiap panggilan Bazel:
STARTUP_FLAGS=\
--host_jvm_args=-javaagent:<path to java-allocation-instrumenter-3.3.0.jar> \
--host_jvm_args=-DRULE_MEMORY_TRACKER=1
Keduanya memulai server dalam mode pelacakan memori. Jika Anda melupakannya bahkan selama satu panggilan Bazel, server akan dimulai ulang dan Anda harus memulai dari awal.
Menggunakan Pelacak Memori
Sebagai contoh, lihat foo
target dan lihat fungsinya. Hanya ke
menjalankan analisis dan tidak menjalankan fase eksekusi build, tambahkan
--nobuild
.
$ bazel $(STARTUP_FLAGS) build --nobuild //foo:foo
Selanjutnya, lihat banyaknya memori yang digunakan oleh seluruh instance Bazel:
$ bazel $(STARTUP_FLAGS) info used-heap-size-after-gc
> 2594MB
Kelompokkan menurut class aturan menggunakan bazel dump --rules
:
$ bazel $(STARTUP_FLAGS) dump --rules
>
RULE COUNT ACTIONS BYTES EACH
genrule 33,762 33,801 291,538,824 8,635
config_setting 25,374 0 24,897,336 981
filegroup 25,369 25,369 97,496,272 3,843
cc_library 5,372 73,235 182,214,456 33,919
proto_library 4,140 110,409 186,776,864 45,115
android_library 2,621 36,921 218,504,848 83,366
java_library 2,371 12,459 38,841,000 16,381
_gen_source 719 2,157 9,195,312 12,789
_check_proto_library_deps 719 668 1,835,288 2,552
... (more output)
Melihat tujuan memori dengan menghasilkan file pprof
menggunakan bazel dump --skylark_memory
:
$ bazel $(STARTUP_FLAGS) dump --skylark_memory=$HOME/prof.gz
> Dumping Starlark heap to: /usr/local/google/home/$USER/prof.gz
Gunakan alat pprof
untuk menyelidiki heap. Titik awal yang baik adalah
mendapatkan grafik flame dengan menggunakan pprof -flame $HOME/prof.gz
.
Dapatkan pprof
dari https://github.com/google/pprof.
Dapatkan dump teks dari situs panggilan terpopuler yang dianotasi dengan baris:
$ pprof -text -lines $HOME/prof.gz
>
flat flat% sum% cum cum%
146.11MB 19.64% 19.64% 146.11MB 19.64% android_library <native>:-1
113.02MB 15.19% 34.83% 113.02MB 15.19% genrule <native>:-1
74.11MB 9.96% 44.80% 74.11MB 9.96% glob <native>:-1
55.98MB 7.53% 52.32% 55.98MB 7.53% filegroup <native>:-1
53.44MB 7.18% 59.51% 53.44MB 7.18% sh_test <native>:-1
26.55MB 3.57% 63.07% 26.55MB 3.57% _generate_foo_files /foo/tc/tc.bzl:491
26.01MB 3.50% 66.57% 26.01MB 3.50% _build_foo_impl /foo/build_test.bzl:78
22.01MB 2.96% 69.53% 22.01MB 2.96% _build_foo_impl /foo/build_test.bzl:73
... (more output)