規則

回報問題 查看來源

規則定義了 Bazel 對輸入執行的一系列動作,用來產生一組輸出內容。在規則的實作函式傳回的 providers 中會參照這些輸出內容。舉例來說,C++ 二進位檔規則可能會:

  1. 採用一組 .cpp 來源檔案 (輸入)。
  2. 在來源檔案 (動作) 上執行 g++
  3. 傳回含有可執行輸出內容和其他檔案的 DefaultInfo 提供者,以便在執行階段提供。
  4. 傳回含有從目標及其依附元件收集的 C++ 專屬資訊的 CcInfo 提供者。

從 Bazel 的角度來看,g++ 和標準 C++ 程式庫也是這項規則的輸入內容。身為規則寫入者,您必須考慮使用者提供的規則輸入內容,以及執行動作所需的所有工具和程式庫。

在建立或修改任何規則之前,請確認您已熟悉 Bazel 的建構階段。請務必瞭解建構的三個階段 (載入、分析與執行)。瞭解巨集也有助於瞭解規則和巨集之間的差異。如要開始使用,請先參閱規則教學課程。接著,請將這個頁面當做參考。

Bazel 本身就內建了一些規則。這些原生規則 (例如 cc_libraryjava_binary) 可以針對特定語言提供部分核心支援。定義自己的規則後,您可以為 Bazel 未原生支援的語言和工具新增類似的支援。

Bazel 提供可擴充模型,以便使用 Starlark 語言編寫規則。這些規則以 .bzl 檔案編寫,可直接從 BUILD 檔案載入。

定義自己的規則時,您可以決定規則支援的屬性,以及規則產生輸出內容的方式。

規則的 implementation 函式會定義在分析階段期間的確切行為。這個函式不會執行任何外部指令。而是會註冊之後在執行階段中,視需要建構規則輸出內容的動作

建立規則

.bzl 檔案中,使用 rule 函式定義新規則,並將結果儲存在全域變數中。呼叫 rule 會指定屬性實作函式

example_library = rule(
    implementation = _example_library_impl,
    attrs = {
        "deps": attr.label_list(),
        ...
    },
)

這會定義名為 example_library規則種類

rule 的呼叫也必須指定規則會建立「可執行」輸出內容 (包含 executable=True),或具體來說是測試執行檔 (包含 test=True)。如果是後者,則該規則為「測試規則」,且規則名稱必須以 _test 結尾。

目標例項化

您可在 BUILD 檔案中載入並呼叫規則:

load('//some/pkg:rules.bzl', 'example_library')

example_library(
    name = "example_target",
    deps = [":another_target"],
    ...
)

每次對建構規則的呼叫都不會傳回任何值,但具有定義目標的副作用。這稱為「執行個體化」規則。這會指定新目標的名稱和目標屬性的值。

您也可以透過 Starlark 函式呼叫規則,並在 .bzl 檔案中載入規則。呼叫規則的 Starlark 函式稱為「Starlark 巨集」。Starlark 巨集最終必須從 BUILD 檔案呼叫,且只能在載入階段 (系統評估 BUILD 檔案為目標執行個體化時) 呼叫。

屬性

「屬性」是規則引數。屬性可以為目標的「實作」提供特定值,也可以參照其他目標來建立依附元件圖表。

srcsdeps 等規則專屬屬性的定義方式,是將屬性名稱的對應傳遞至結構定義 (使用 attr 模組建立) 至 ruleattrs 參數。系統會間接將 namevisibility常見屬性新增至所有規則。額外屬性會明確新增至執行檔和測試規則。以隱含方式新增至規則的屬性不能包含在傳遞至 attrs 的字典中。

依附元件屬性

處理原始碼的規則通常會定義下列屬性,以處理各種依附元件類型

  • srcs 會指定由目標動作處理的來源檔案。通常,屬性結構定義會指定規則處理的來源檔案種類所需的副檔名。針對具有標頭檔案的語言規則,通常會針對目標及其取用者處理的標頭指定獨立的 hdrs 屬性。
  • deps 會指定目標的程式碼依附元件。屬性結構定義應指定這些依附元件必須提供哪些「提供者」。(例如,cc_library 提供 CcInfo)。
  • data 會指定在執行階段期間提供檔案給任何依附目標的可執行檔。這樣即可指定任意檔案。
example_library = rule(
    implementation = _example_library_impl,
    attrs = {
        "srcs": attr.label_list(allow_files = [".example"]),
        "hdrs": attr.label_list(allow_files = [".header"]),
        "deps": attr.label_list(providers = [ExampleInfo]),
        "data": attr.label_list(allow_files = True),
        ...
    },
)

這些是依附元件屬性的範例。任何指定輸入標籤的屬性 (使用 attr.label_listattr.labelattr.label_keyed_string_dict 定義的屬性) 會在定義目標時,指定目標與其標籤 (或對應的 Label 物件) 之間特定類型的依附元件。系統會按照定義的目標解析存放區,也可能是路徑。

example_library(
    name = "my_target",
    deps = [":other_target"],
)

example_library(
    name = "other_target",
    ...
)

在此範例中,other_targetmy_target 的依附元件,因此會先分析 other_target。如果目標的依附元件圖中有循環,就會發生錯誤。

私人屬性和隱含依附元件

具有預設值的依附元件屬性會建立「隱含依附元件」。此為隱含的,因為這是使用者未在 BUILD 檔案中指定的目標圖表的一部分。在大多數情況下,使用者都不想指定規則要使用的工具,因此隱含依附元件適合對規則與工具 (建構時間依附元件,例如編譯器) 之間的關係進行硬式編碼。在規則的實作函式中,系統會將其視為與其他依附元件相同。

如果您希望提供隱含依附元件,但不允許使用者覆寫該值,可以將屬性名稱設為開頭為底線 (_) 的名稱,並將屬性設為「private」。私人屬性必須具有預設值。一般來說,只有針對隱含依附元件使用私人屬性才有意義。

example_library = rule(
    implementation = _example_library_impl,
    attrs = {
        ...
        "_compiler": attr.label(
            default = Label("//tools:example_compiler"),
            allow_single_file = True,
            executable = True,
            cfg = "exec",
        ),
    },
)

在這個範例中,example_library 類型的每個目標在編譯器 //tools:example_compiler 上都有隱含依附元件。如此一來,即使使用者未將標籤做為輸入內容傳遞,example_library 的實作函式仍可產生叫用編譯器的動作。由於 _compiler 是不公開屬性,因此其遵循 ctx.attr._compiler 一律會指向此規則類型所有目標中的 //tools:example_compiler。或者,您也可以將屬性命名為 compiler (不含底線),並保留預設值。這可讓使用者視需要替換其他編譯器,但無需瞭解編譯器的標籤。

隱含依附元件通常用於與規則實作位於同一存放區的工具。如果工具來自執行平台或其他存放區,規則應從工具鍊取得該工具。

輸出屬性

輸出屬性 (例如 attr.outputattr.output_list) 會宣告目標產生的輸出檔案。這與依附元件屬性的差異有兩種:

  • 這些元件會定義輸出檔案目標,而不是參照其他位置定義的目標。
  • 輸出檔案目標取決於例項化的規則目標,而非反過來。

一般而言,只有在規則需要以使用者定義的名稱建立輸出內容時,才能以目標名稱為依據,才會使用輸出屬性。如果規則有一個輸出屬性,通常會命名為 outouts

建議使用輸出屬性建立預先宣告的輸出內容,具體依附或透過指令列要求

實作函式

每項規則都需要 implementation 函式。這些函式會在分析階段中嚴格執行,並將載入階段中產生的目標圖形轉換成要在執行階段執行的動作圖表。因此,實作函式無法實際讀取或寫入檔案。

規則實作函式通常是私人性質 (以底線命名)。一般情況下,這些變數的名稱與規則名稱相同,但後置字串為 _impl

實作函式僅使用一個參數:一種稱為 ctx規則結構定義。而會傳回提供者清單。

目標

在分析期間,依附元件會以 Target 物件表示。這些物件包含執行目標實作函式時產生的提供者

ctx.attr 有與每個依附元件屬性名稱相對應的欄位,其中包含 Target 物件,透過該屬性代表每個直接依附元件。如果是 label_list 屬性,這是 Targets 清單。如果是 label 屬性,這是指單一 TargetNone

目標的實作函式會傳回提供者物件清單:

return [ExampleInfo(headers = depset(...))]

您可以透過索引標記法 ([]) 存取這些項目,並以提供者類型做為鍵。這些提供者可在 Starlark 中定義的自訂供應商,或以 Starlark 全域變數做為原生規則的供應商

舉例來說,如果規則透過 hdrs 屬性取得標頭檔案,並將其提供給目標及其取用者的編譯動作,則該規則可按照以下方式收集:

def _example_library_impl(ctx):
    ...
    transitive_headers = [hdr[ExampleInfo].headers for hdr in ctx.attr.hdrs]

針對從目標實作函式 (而非提供者物件清單) 傳回 struct 的舊版樣式:

return struct(example_info = struct(headers = depset(...)))

您可以從 Target 物件的對應欄位擷取提供者:

transitive_headers = [hdr.example_info.headers for hdr in ctx.attr.hdrs]

強烈建議您不要使用這個樣式,規則應遷出

檔案

檔案以 File 物件表示。由於 Bazel 不會在分析階段執行檔案 I/O,因此這些物件無法直接讀取或寫入檔案內容。而是被傳遞到動作發出函式 (請參閱 ctx.actions),以建構動作圖的一部分。

File 可以是來源檔案或產生的檔案。每個產生的檔案都必須是只有一個動作的輸出內容。來源檔案不得為任何動作的輸出內容。

針對每個依附元件屬性,ctx.files 的對應欄位會包含透過該屬性列出所有依附元件的預設輸出內容清單:

def _example_library_impl(ctx):
    ...
    headers = depset(ctx.files.hdrs, transitive=transitive_headers)
    srcs = ctx.files.srcs
    ...

ctx.file 包含單一 FileNone,用於規格設為 allow_single_file=True 的依附元件屬性。ctx.executable 的行為與 ctx.file 相同,但只會包含規格設定 executable=True 的依附元件屬性欄位。

宣告輸出內容

在分析階段,規則的實作函式可建立輸出內容。由於所有標籤必須在載入階段已知,因此這些額外輸出沒有標籤。您可以使用 ctx.actions.declare_filectx.actions.declare_directory 建立用於輸出的 File 物件。輸出的名稱通常以目標的名稱 ctx.label.name 為基礎:

def _example_library_impl(ctx):
  ...
  output_file = ctx.actions.declare_file(ctx.label.name + ".output")
  ...

對於預先宣告的輸出內容 (例如為輸出屬性建立的項目),改為從 ctx.outputs 的對應欄位擷取 File 物件。

動作

動作說明如何從一組輸入內容產生一組輸出內容,例如「run gcc on hello.c and get hello.o」。建立動作時,Bazel 不會立即執行指令。由於動作可能會依附另一個動作的輸出內容,因此該圖表會登錄在依附元件圖表中。舉例來說,在 C 中,您必須在編譯器之後呼叫連結器。

用於建立動作的一般用途函式定義於 ctx.actions

ctx.actions.args 可用於有效累積動作的引數。這樣在執行時間之前,就能避免壓平依附元件集:

def _example_library_impl(ctx):
    ...

    transitive_headers = [dep[ExampleInfo].headers for dep in ctx.attr.deps]
    headers = depset(ctx.files.hdrs, transitive=transitive_headers)
    srcs = ctx.files.srcs
    inputs = depset(srcs, transitive=[headers])
    output_file = ctx.actions.declare_file(ctx.label.name + ".output")

    args = ctx.actions.args()
    args.add_joined("-h", headers, join_with=",")
    args.add_joined("-s", srcs, join_with=",")
    args.add("-o", output_file)

    ctx.actions.run(
        mnemonic = "ExampleCompile",
        executable = ctx.executable._compiler,
        arguments = [args],
        inputs = inputs,
        outputs = [output_file],
    )
    ...

動作會接受輸入檔案的清單或解碼集,並產生輸出檔案的 (非空白) 清單。請務必在分析階段確認一組輸入和輸出檔案。可能取決於屬性值,包括依附元件的提供者,但不能依賴執行結果。舉例來說,如果您的動作執行瞭解壓縮指令,您必須指定要加載哪些檔案 (在執行解壓縮前)。在內部建立可變數量檔案的動作,可以將這些檔案包裝成單一檔案 (例如 ZIP、tar 或其他封存格式)。

動作必須列出所有輸入內容。列出未使用但效率不彰的輸入內容。

動作必須建立其所有輸出內容。這類檔案可以寫入其他檔案,但無法取得輸出內容中的任何項目。所有宣告的輸出內容都必須透過某個動作寫入。

動作與純函式相當:應只依賴提供的輸入內容,避免存取電腦資訊、使用者名稱、時鐘、網路或 I/O 裝置 (讀取輸入和寫入輸出內容除外)。這一點非常重要,因為系統會快取並重複使用輸出內容。

Bazel 會解析依附元件,並決定要執行哪些動作。如果依附元件圖表中有循環,就會發生錯誤。建立動作並不保證會執行,實際結果視版本是否需要輸出而定。

供應商外掛程式

提供者是規則會對依附規則的其他規則公開的資訊,這類資料包括輸出檔案、程式庫、用於傳遞工具指令列的參數,或是目標使用者應瞭解的任何其他內容。

由於規則的實作函式只能從例項化目標的即時依附元件中讀取提供者,因此規則必須從目標的依附元件中轉送任何需要由目標取用者知道的資訊,一般方法是將這些資訊匯總至 depset

目標提供者是由實作函式傳回的 Provider 物件清單指定。

舊版實作函式也可以以舊版樣式編寫,其中實作函式會傳回 struct,而非提供者物件清單。強烈建議您不要使用這個樣式,規則應遷出

預設輸出裝置

目標的「預設輸出」是在指令列要求目標進行建構時,依預設要求的輸出內容。舉例來說,java_library 目標 //pkg:foo 擁有 foo.jar 做為預設輸出,因此這會由指令 bazel build //pkg:foo 建構。

預設輸出內容是由 DefaultInfofiles 參數指定:

def _example_library_impl(ctx):
    ...
    return [
        DefaultInfo(files = depset([output_file]), ...),
        ...
    ]

如果規則實作未傳回 DefaultInfo,或是未指定 files 參數,DefaultInfo.files 會預設為所有預先宣告的輸出內容 (通常是是由輸出屬性建立的輸出內容)。

即使不應直接使用這些輸出內容,執行動作的規則應提供預設輸出內容。如果動作不在要求輸出的圖表中,系統會裁掉該動作。如果只有目標使用者會使用輸出內容,那麼當目標是獨立建構時,系統不會執行這些動作。這會使偵錯更加困難,因為僅重建失敗的目標不會重現失敗。

執行檔案

執行檔案是目標在執行階段 (而非建構時間) 使用的一組檔案。在執行階段中,Bazel 會建立目錄樹狀結構,當中包含指向執行檔案的符號連結。這會暫存二進位檔的環境,使其在執行階段期間能存取執行檔案。

您可以在建立規則時手動新增執行檔案。您可以在規則結構定義的 ctx.runfiles 上建立 runfiles 物件,並傳遞至 DefaultInfo 上的 runfiles 參數。runfiles可執行規則的可執行輸出內容會以隱含形式加入至執行檔案。

有些規則會指定屬性 (通常命名為 data),其中的輸出內容會新增至目標的執行檔案。Runfile 也應從 data,以及任何可能會提供最終執行程式碼的屬性 (通常為 srcs,其中可能包含與 data 相關聯的 data 目標) 和 deps 合併。filegroup

def _example_library_impl(ctx):
    ...
    runfiles = ctx.runfiles(files = ctx.files.data)
    transitive_runfiles = []
    for runfiles_attr in (
        ctx.attr.srcs,
        ctx.attr.hdrs,
        ctx.attr.deps,
        ctx.attr.data,
    ):
        for target in runfiles_attr:
            transitive_runfiles.append(target[DefaultInfo].default_runfiles)
    runfiles = runfiles.merge_all(transitive_runfiles)
    return [
        DefaultInfo(..., runfiles = runfiles),
        ...
    ]

自訂供應商

您可以使用 provider 函式定義提供者,以傳送規則特定資訊:

ExampleInfo = provider(
    "Info needed to compile/link Example code.",
    fields={
        "headers": "depset of header Files from transitive dependencies.",
        "files_to_link": "depset of Files from compilation.",
    })

這樣一來,規則實作函式就能建構並傳回供應器例項:

def _example_library_impl(ctx):
  ...
  return [
      ...
      ExampleInfo(
          headers = headers,
          files_to_link = depset(
              [output_file],
              transitive = [
                  dep[ExampleInfo].files_to_link for dep in ctx.attr.deps
              ],
          ),
      )
  ]
自訂供應商初始化

您可以使用自訂的預先處理和驗證邏輯,保護提供者的例項化作業。這可以確保所有供應商執行個體都遵循某些不變化,或為使用者提供更簡潔的 API 來獲取執行個體。

方法是將 init 回呼傳遞至 provider 函式。如果指定了這個回呼,provider() 的傳回類型會變更為兩個值的元組:未使用 init 時,為一般回傳值的提供者符號,以及「原始建構函式」。

在此情況下,呼叫提供者符號時,不會直接傳回新的例項,而是將引數轉送至 init 回呼。回呼的傳回值必須是將欄位名稱 (字串) 對應至值的字典;用於初始化新執行個體的欄位。請注意,回呼可能包含任何簽章,如果引數與簽名不符,系統就會回報錯誤,就像直接叫用回呼一樣。

相較之下,原始建構函式會略過 init 回呼。

以下範例使用 init 預先處理並驗證其引數:

# //pkg:exampleinfo.bzl

_core_headers = [...]  # private constant representing standard library files

# It's possible to define an init accepting positional arguments, but
# keyword-only arguments are preferred.
def _exampleinfo_init(*, files_to_link, headers = None, allow_empty_files_to_link = False):
    if not files_to_link and not allow_empty_files_to_link:
        fail("files_to_link may not be empty")
    all_headers = depset(_core_headers, transitive = headers)
    return {'files_to_link': files_to_link, 'headers': all_headers}

ExampleInfo, _new_exampleinfo = provider(
    ...
    init = _exampleinfo_init)

export ExampleInfo

接著,規則實作可能會將供應器例項化,如下所示:

    ExampleInfo(
        files_to_link=my_files_to_link,  # may not be empty
        headers = my_headers,  # will automatically include the core headers
    )

原始建構函式可用來定義不會通過 init 邏輯的其他公用工廠函式。例如,在 exampleinfo.bzl 中,我們可定義:

def make_barebones_exampleinfo(headers):
    """Returns an ExampleInfo with no files_to_link and only the specified headers."""
    return _new_exampleinfo(files_to_link = depset(), headers = all_headers)

一般來說,原始建構函式會繫結至名稱以底線開頭 (上方 _new_exampleinfo) 的變數,因此使用者程式碼無法載入該變數,並產生任意提供者例項。

init 的另一個用途是直接禁止使用者呼叫供應器符號,並強制使用者改用工廠函式:

def _exampleinfo_init_banned(*args, **kwargs):
    fail("Do not call ExampleInfo(). Use make_exampleinfo() instead.")

ExampleInfo, _new_exampleinfo = provider(
    ...
    init = _exampleinfo_init_banned)

def make_exampleinfo(...):
    ...
    return _new_exampleinfo(...)

可執行的規則和測試規則

可執行的規則會定義可透過 bazel run 指令叫用的目標。測試規則是特殊類型的執行檔規則,此規則的目標也可透過 bazel test 指令叫用。如要建立可執行和測試規則,請在呼叫 rule 時,將對應的 executabletest 引數設為 True

example_binary = rule(
   implementation = _example_binary_impl,
   executable = True,
   ...
)

example_test = rule(
   implementation = _example_binary_impl,
   test = True,
   ...
)

測試規則的名稱必須以 _test 結尾。(測試目標名稱通常也會依慣例以 _test 結尾,但這並非硬性規定)。非測試規則不得包含這個後置字串。

這兩種規則必須產生可由 runtest 指令叫用的可執行輸出檔案 (不一定預先宣告)。如要告知 Bazel 將哪一項規則輸出內容做為執行檔,請將該輸出內容做為傳回的 DefaultInfo 提供者的 executable 引數傳遞。該 executable 會新增至規則的預設輸出內容中,因此您不必同時傳遞給 executablefiles。此參數也會以隱含形式新增至 runfiles

def _example_binary_impl(ctx):
    executable = ctx.actions.declare_file(ctx.label.name)
    ...
    return [
        DefaultInfo(executable = executable, ...),
        ...
    ]

產生這個檔案的動作必須在檔案中設定可執行檔的位元。如果是 ctx.actions.runctx.actions.run_shell 動作,應由該動作叫用的基礎工具完成。若是 ctx.actions.write 動作,請傳遞 is_executable=True

做為舊版行為,可執行的規則有預先宣告的特殊 ctx.outputs.executable 輸出內容。如果未使用 DefaultInfo 指定執行檔,這個檔案會做為預設執行檔,且不得使用。此輸出機制不支援在分析時自訂可執行檔的名稱,因此已遭淘汰。

請參閱執行規則測試規則的範例。

可執行規則測試規則除了對「所有規則」新增的屬性外,還以隱含方式定義其他屬性。隱性新增屬性的預設值無法變更,但可以透過將私人規則納入會修改預設值的 Starlark 巨集中的方式來解決這個問題:

def example_test(size="small", **kwargs):
  _example_test(size=size, **kwargs)

_example_test = rule(
 ...
)

執行檔案位置

使用 bazel run (或 test) 執行執行檔時,執行檔案目錄的根層級會相鄰。路徑如下:

# Given launcher_path and runfile_file:
runfiles_root = launcher_path.path + ".runfiles"
workspace_name = ctx.workspace_name
runfile_path = runfile_file.short_path
execution_root_relative_path = "%s/%s/%s" % (
    runfiles_root, workspace_name, runfile_path)

執行檔案目錄下 File 的路徑會對應至 File.short_path

bazel 直接執行的二進位檔與 runfiles 目錄的根目錄相鄰。但是,從執行檔案「從」呼叫的二進位檔無法取得相同的假設。為緩解此問題,每個二進位檔均應提供一種方法,使用環境或指令列引數/旗標,接受其執行檔案根目錄做為參數。如此一來,二進位檔就能將正確的標準執行檔根目錄傳送至其呼叫的二進位檔。如未設定,二進位檔可以猜測該是第一個二進位檔,並尋找相鄰的執行檔案目錄。

進階主題

要求輸出檔案

單一目標可以有多個輸出檔案。執行 bazel build 指令時,系統會將指定至指令的目標部分輸出內容視為「已要求」,Bazel 只會建構這些要求的檔案以及直接或間接依附的檔案。(在動作圖中,Bazel 只會執行可做為要求檔案的遞移依附元件存取的動作。)

除了預設輸出以外,您也可以透過指令列明確要求任何預先宣告的輸出內容。規則可以透過輸出屬性指定預先宣告的輸出內容。在此情況下,使用者將規則例項化時,會明確選擇輸出的標籤。如要取得輸出屬性的 File 物件,請使用 ctx.outputs 的對應屬性。此外,規則也能根據目標名稱以隱含方式定義預先宣告的輸出內容,但這項功能已淘汰。

除了預設輸出以外,還有「輸出群組」,這是可以一起要求的輸出檔案集合。您可以使用 --output_groups 要求這些指令。舉例來說,如果目標 //pkg:mytarget 屬於具有 debug_files 輸出群組的規則類型,則可執行 bazel build //pkg:mytarget --output_groups=debug_files 來建構這些檔案。由於未預先宣告的輸出內容沒有標籤,因此只能要求顯示在預設輸出或輸出群組中。

OutputGroupInfo 提供者可以指定輸出群組。請注意,與許多內建提供者不同,OutputGroupInfo 可以使用具有任意名稱的參數來定義輸出群組。

def _example_library_impl(ctx):
    ...
    debug_file = ctx.actions.declare_file(name + ".pdb")
    ...
    return [
        DefaultInfo(files = depset([output_file]), ...),
        OutputGroupInfo(
            debug_files = depset([debug_file]),
            all_files = depset([output_file, debug_file]),
        ),
        ...
    ]

此外,與大多數提供者不同的是,OutputGroupInfo 可由「切面」和要套用該切面的規則目標傳回,前提是其未定義相同的輸出群組。在這種情況下,系統會合併產生的提供者。

請注意,OutputGroupInfo 通常不應用來傳達目標中特定一類檔案給其消費者的動作。請改為定義規則專屬提供者

設定

假設您要為不同架構建構 C++ 二進位檔。建構可能相當複雜,且包含多個步驟。部分中繼二進位檔 (例如編譯器和程式碼產生器) 必須在執行平台 (可以是主機或遠端執行程式) 上執行。某些二進位檔 (例如最終輸出) 必須針對目標架構建構。

因此,Bazel 有「設定」和「轉換」的概念。最頂層的目標 (在指令列上要求的要求) 是以「目標」設定建構,而應在執行平台上執行的工具則是以「exec」設定建構而成。規則可能會根據設定產生不同的動作,例如變更傳遞至編譯器的 CPU 架構。在某些情況下,不同設定可能需要同一個程式庫。如果發生這種情況,系統會分析模型,並可能會多次建構。

根據預設,Bazel 會在與目標本身相同的設定中建構目標依附元件,也就是不經過轉換。如果依附元件是協助建構目標所需的工具,相應的屬性應指定轉換至執行設定所需的工具。這會導致工具及其所有依附元件,為執行平台進行建構。

針對每個依附元件屬性,您可以利用 cfg 決定依附元件應以相同設定建構,還是轉換至執行設定。如果依附元件屬性含有 executable=True 標記,則 cfg 必須明確設定。這是為了防止不小心針對錯誤設定建構工具。查看範例

一般來說,執行階段所需的來源、相依程式庫和執行檔可以使用相同的設定。

在建構作業中執行的工具 (例如編譯器或程式碼產生器),應針對 Exc 設定建構。在此情況下,請在屬性中指定 cfg="exec"

否則,應針對目標設定建構執行階段使用的執行檔 (例如做為測試的一部分)。在此情況下,請在屬性中指定 cfg="target"

cfg="target" 實際上不會執行任何動作,只是用來協助規則設計人員明確瞭解其意圖的方便性值。如果 executable=False 表示 cfg 為選用項目,請只在對可讀性有幫助的情況下設定此項目。

您也可以使用 cfg=my_transition 來利用使用者定義的轉場效果,讓規則作者在變更設定時享有極大的彈性,同時又能放大建構圖表,使其不易理解

注意:Bazel 先前並未瞭解執行平台的概念,而是將所有建構動作都視為在主機上執行。Bazel 6.0 以下版本建立了專屬的「主機」設定來代表這項設定。如果您在程式碼或舊說明文件中看到「主機」的參照,這就是指的意思。建議您使用 Bazel 6.0 以上版本,以免產生額外的概念負擔。

設定片段

規則可能會存取設定片段,例如 cppjavajvm。不過,您必須宣告所有必要的片段,以免發生存取錯誤:

def _impl(ctx):
    # Using ctx.fragments.cpp leads to an error since it was not declared.
    x = ctx.fragments.java
    ...

my_rule = rule(
    implementation = _impl,
    fragments = ["java"],      # Required fragments of the target configuration
    host_fragments = ["java"], # Required fragments of the host configuration
    ...
)

一般來說,執行檔案樹狀結構中檔案的相對路徑與來源樹狀結構或產生的輸出樹狀結構中,該檔案的相對路徑相同。如果因為某些原因而需要不同的引數,您可以指定 root_symlinkssymlinks 引數。root_symlinks 是檔案的字典對應路徑,其中的路徑與執行檔案目錄的根目錄相關。symlinks 字典相同,但路徑會間接加上主要工作區的名稱 (「並非」包含目前目標的存放區名稱)。

    ...
    runfiles = ctx.runfiles(
        root_symlinks = {"some/path/here.foo": ctx.file.some_data_file2}
        symlinks = {"some/path/here.bar": ctx.file.some_data_file3}
    )
    # Creates something like:
    # sometarget.runfiles/
    #     some/
    #         path/
    #             here.foo -> some_data_file2
    #     <workspace_name>/
    #         some/
    #             path/
    #                 here.bar -> some_data_file3

如果使用 symlinksroot_symlinks,請注意不要將兩個不同檔案對應至執行檔案樹狀結構中的相同路徑。這會導致建構作業失敗,並收到說明衝突的錯誤訊息。如要修正,您必須修改 ctx.runfiles 引數來移除衝突。這項檢查會針對使用您規則的任何目標,以及依附這些目標的任何種類目標執行檢查。如果您的工具可能會由其他工具間接使用,這會特別具有風險;工具的所有執行檔案及其所有依附元件中的符號連結名稱都不得重複。

程式碼涵蓋率

執行 coverage 指令時,建構作業可能需要針對特定目標新增涵蓋範圍檢測。此建構也會收集檢測的來源檔案清單。系統會透過標記 --instrumentation_filter 控管目標子集。除非指定 --instrument_test_targets,否則系統會排除測試目標。

如果規則實作會在建構時新增涵蓋率檢測,就需要在實作函式中加以考量。如果應對目標的來源進行檢測,ctx.coverage_instrumented 會傳回 true:

# Are this rule's sources instrumented?
if ctx.coverage_instrumented():
  # Do something to turn on coverage for this compile action

無論目標的來源是否經過檢測,都可以在 ctx.configuration.coverage_enabled 上設定一律必須處於涵蓋率模式的邏輯。

如果規則在編譯前直接納入其依附元件的來源 (例如標頭檔案),那麼如果應檢測依附元件的來源,可能還需要開啟編譯時間檢測功能:

# Are this rule's sources or any of the sources for its direct dependencies
# in deps instrumented?
if (ctx.configuration.coverage_enabled and
    (ctx.coverage_instrumented() or
     any([ctx.coverage_instrumented(dep) for dep in ctx.attr.deps]))):
    # Do something to turn on coverage for this compile action

規則也應針對使用 coverage_common.instrumented_files_info 所建構的 InstrumentedFilesInfo 提供者,提供涵蓋哪些屬性的相關資訊。instrumented_files_infodependency_attributes 參數應列出所有執行階段依附元件屬性,包括 deps 等程式碼依附元件和 data 等資料依附元件。如果可能會新增涵蓋範圍檢測,則 source_attributes 參數應列出規則的來源檔案屬性:

def _example_library_impl(ctx):
    ...
    return [
        ...
        coverage_common.instrumented_files_info(
            ctx,
            dependency_attributes = ["deps", "data"],
            # Omitted if coverage is not supported for this rule:
            source_attributes = ["srcs", "hdrs"],
        )
        ...
    ]

如果未傳回 InstrumentedFilesInfo,系統會在 dependency_attributes 中建立預設屬性,其中包含每個未在 dependency_attributes 中將 cfg 設為 "host""exec" 的非工具依附元件屬性。(這並不是理想的行為,因為這會將 srcs 等屬性放入 dependency_attributes 而非 source_attributes,但您可以避免對依附元件鏈結中的所有規則使用明確涵蓋範圍設定)。

驗證動作

有時您需要驗證建構的內容,而驗證作業所需的資訊也只會出現在構件 (來源檔案或產生的檔案) 中。由於這項資訊位於構件中,因此規則無法在分析時執行這項驗證,因為規則無法讀取檔案。相反地,動作必須在執行時進行這項驗證。如果驗證失敗,動作就會失敗,建構作業也會因此。

可能執行的驗證範例包括靜態分析、程式碼檢查、依附元件和一致性檢查,以及樣式檢查。

驗證動作也可以將建構構件不需要的動作移至獨立的動作,藉此提升建構效能。舉例來說,如果執行編譯和程式碼檢查的單一動作可分為編譯和程式碼檢查動作,則檢查動作可做為驗證動作執行,並與其他動作平行執行。

這些「驗證動作」通常不會產生在建構其他位置使用的任何項目,因為這類動作只需要斷言輸入內容。但這會產生問題:如果驗證動作並未產生在建構作業的其他位置使用的內容,規則會如何要求執行動作?過去,這個方法的用意是讓驗證動作輸出空白檔案,然後以人工方式將該輸出內容新增至建構作業中其他重要動作的輸入內容:

這種做法雖然可行,因為 Bazel 一律會在執行編譯動作時執行驗證動作,但這會帶來顯著的缺點:

  1. 驗證動作在版本的重要路徑中。由於 Bazel 認為執行編譯動作所需的空白輸出內容是必要的,因此會先執行驗證動作,即使編譯動作會忽略輸入內容。這樣可以減少平行處理,並減緩建構作業的速度。

  2. 如果建構中的其他動作可能而非編譯動作,則還需要將驗證動作的空白輸出內容新增至這些動作 (例如 java_library 的來源 jar 輸出內容)。如果之後新增可能會而非編譯動作的新動作,導致空白驗證輸出內容意外消失,這也會問題。

如要解決這類問題,請使用「驗證輸出群組」。

驗證輸出群組

「驗證輸出群組」是一個輸出群組,其設計為保存其他未使用的驗證動作輸出內容,因此無需人為地加入其他動作的輸入內容。

這個群組特別重要,無論 --output_groups 旗標的值為何,以及無論目標的依附方式為何 (例如在指令列、做為依附元件,或透過目標的隱含輸出),系統一律會要求其輸出內容。請注意,系統仍會套用一般快取和增量性:如果驗證動作的輸入未變更,且先前驗證動作成功,則系統不會執行驗證動作。

使用這個輸出群組時,驗證動作仍會輸出某些檔案,即使是空白檔案也是如此。這可能需要包裝一些通常不會建立輸出內容的工具,以便建立檔案。

在下列三種情況下,目標的驗證動作無法執行:

  • 目標依循工具
  • 當目標依附為隱含依附元件時 (例如以「_」開頭的屬性)
  • 如果在主機或 exec 設定中建立了目標。

我們假設這些目標各有專屬的建構和測試,會發現所有驗證失敗情形。

使用驗證輸出群組

「驗證輸出群組」的名稱是 _validation,使用方式類似於任何其他輸出群組:

def _rule_with_validation_impl(ctx):

  ctx.actions.write(ctx.outputs.main, "main output\n")

  ctx.actions.write(ctx.outputs.implicit, "implicit output\n")

  validation_output = ctx.actions.declare_file(ctx.attr.name + ".validation")
  ctx.actions.run(
      outputs = [validation_output],
      executable = ctx.executable._validation_tool,
      arguments = [validation_output.path])

  return [
    DefaultInfo(files = depset([ctx.outputs.main])),
    OutputGroupInfo(_validation = depset([validation_output])),
  ]


rule_with_validation = rule(
  implementation = _rule_with_validation_impl,
  outputs = {
    "main": "%{name}.main",
    "implicit": "%{name}.implicit",
  },
  attrs = {
    "_validation_tool": attr.label(
        default = Label("//validation_actions:validation_tool"),
        executable = True,
        cfg = "exec"),
  }
)

請注意,驗證輸出檔案不會新增至 DefaultInfo,也不會新增至任何其他動作的輸入內容。如果目標取決於標籤,或目標的任何隱含輸出內容直接或間接依賴,則該規則種類目標的驗證動作仍會執行。

通常很重要的是,驗證動作的輸出內容只會進入驗證輸出群組,不會加進其他動作的輸入內容,因為這樣可能會擊敗平行處理量的增益。請注意,Bazel 目前還沒有任何強制執行此檢查的特殊檢查。因此,您應進行測試,確保驗證動作輸出內容不會新增至 Starlark 規則測試中的任何動作輸入值。例如:

load("@bazel_skylib//lib:unittest.bzl", "analysistest")

def _validation_outputs_test_impl(ctx):
  env = analysistest.begin(ctx)

  actions = analysistest.target_actions(env)
  target = analysistest.target_under_test(env)
  validation_outputs = target.output_groups._validation.to_list()
  for action in actions:
    for validation_output in validation_outputs:
      if validation_output in action.inputs.to_list():
        analysistest.fail(env,
            "%s is a validation action output, but is an input to action %s" % (
                validation_output, action))

  return analysistest.end(env)

validation_outputs_test = analysistest.make(_validation_outputs_test_impl)

驗證動作旗標

執行驗證動作是由 --run_validations 指令列標記 (預設為 true) 控管。

已淘汰的功能

已淘汰的預先宣告輸出內容

使用預先宣告的輸出內容有兩種已淘汰的方法:

  • ruleoutputs 參數會指定輸出屬性名稱和字串範本之間的對應關係,用於產生預先宣告的輸出標籤。建議您使用未宣告的輸出內容,並明確將輸出內容新增至 DefaultInfo.files。使用規則目標的標籤做為使用輸出內容的規則輸入項目,而非使用預先宣告的輸出標籤。

  • 針對可執行規則ctx.outputs.executable 會參照名稱與規則目標相同的預先宣告可執行檔輸出內容。最好明確宣告輸出內容 (例如使用 ctx.actions.declare_file(ctx.label.name)),並確保產生執行檔的指令會設定成允許執行的權限。將可執行的輸出內容明確傳遞至 DefaultInfoexecutable 參數。

應執行的檔案功能

ctx.runfilesrunfiles 類型具有一組複雜的功能,其中有許多是基於舊版因素而保留。以下建議有助於降低複雜度:

  • 避免使用 ctx.runfilescollect_datacollect_default 模式。這些模式會以令人混淆的方式,以隱含方式收集特定硬式編碼依附元件邊緣的執行檔案。請改為使用 ctx.runfilesfilestransitive_files 參數來新增檔案,或將執行檔從依附元件與 runfiles = runfiles.merge(dep[DefaultInfo].default_runfiles) 合併。

  • 避免使用 DefaultInfo 建構函式的 data_runfilesdefault_runfiles。請改為指定 DefaultInfo(runfiles = ...)。基於舊版原因,系統仍會保留「預設」和「資料」執行檔案之間的區別。例如,有些規則會將預設輸出檔案放在 data_runfiles,而非 default_runfiles。規則應「同時」包含預設輸出內容,並從提供執行檔案的屬性 (通常是 data) 的屬性合併 default_runfiles,而不使用 data_runfiles

  • DefaultInfo 擷取 runfiles 時 (通常只用於合併目前規則及其依附元件之間的執行檔案),請使用 DefaultInfo.default_runfiles,「而非」DefaultInfo.data_runfiles

從舊版供應商遷移

以往 Bazel 供應商是 Target 物件上的簡單欄位。這些函式可使用點號運算子存取,且是透過將該欄位放入規則實作函式傳回的結構中來建立。

這個樣式已淘汰,不應用於新程式碼;請參閱下方內容,瞭解遷移相關資訊。新的提供者機制可避免名稱發生衝突。這項功能也支援隱藏資料,方法是要求存取供應器執行個體的任何程式碼使用提供者符號擷取該執行個體。

目前仍可繼續支援舊版供應商。規則可同時傳回舊版和新型提供者,如下所示:

def _old_rule_impl(ctx):
  ...
  legacy_data = struct(x="foo", ...)
  modern_data = MyInfo(y="bar", ...)
  # When any legacy providers are returned, the top-level returned value is a
  # struct.
  return struct(
      # One key = value entry for each legacy provider.
      legacy_info = legacy_data,
      ...
      # Additional modern providers:
      providers = [modern_data, ...])

如果此規則例項產生的 depTarget 物件,則提供者及其內容可以做為 dep.legacy_info.xdep[MyInfo].y 擷取。

除了 providers 以外,傳回的結構也可使用幾個具有特殊意義的其他欄位 (因此不會建立對應的舊版提供者):

  • filesrunfilesdata_runfilesdefault_runfilesexecutable 欄位與 DefaultInfo 的相同命名欄位對應。系統不允許在傳回 DefaultInfo 提供者時指定任何這些欄位。

  • output_groups 欄位會採用結構值,並對應至 OutputGroupInfo

在規則的 provides 宣告和依附元件屬性的 providers 宣告中,舊版提供者會以字串的形式傳入,而現代提供者會以其 *Info 符號傳入。遷移時,請務必從字串變更為符號。如果是複雜或大型規則集,且難以完整更新所有規則,但按照下列步驟順序操作,可能會比較容易:

  1. 使用上述語法修改產生舊版供應器的規則,同時產生舊版和新型提供者。針對宣告傳回舊版提供者的規則,請更新該宣告,以同時納入舊版和新型提供者。

  2. 修改使用舊版提供者的規則,改為使用現代提供者。如有任何屬性宣告需要舊版提供者,請一併更新,改為需要新式提供者。您可以選擇讓消費者接受/要求供應商:使用 hasattr(target, 'foo') 測試是否存在舊版提供者,或使用 FooInfo in target 測試在步驟 1 與步驟 1 之間的工作交錯。

  3. 將舊版供應商從所有規則中完全移除。