パフォーマンスの最適化

問題を報告 ソースを表示 毎晩

ルールを作成する際に最もよくあるパフォーマンスの問題は、依存関係から蓄積されたデータを走査またはコピーすることです。ビルド全体で集約すると、これらのオペレーションは O(N^2) 時間またはスペースを簡単に消費する可能性があります。これを回避するには、depset を効果的に使用する方法を理解することが重要です。

この処理は難しい場合もあるため、Bazel には、誤りを犯した可能性のある場所を見つけるのに役立つ Memory Profiler も用意されています。注意: 非効率的なルールを記述した場合、そのコストは広く使用されるまで明らかにならない場合があります。

依存関係を使用する

ルールの依存関係から情報をまとめる場合は、常に depset を使用する必要があります。書式なしリストまたはディクショナリは、現在のルールに対してローカルで情報をパブリッシュする場合にのみ使用してください。

depset は、共有を可能にするネストされたグラフとして情報を表します。

次のグラフについて考えてみましょう。

C -> B -> A
D ---^

各ノードは 1 つの文字列をパブリッシュします。depset を使用すると、データは次のようになります。

a = depset(direct=['a'])
b = depset(direct=['b'], transitive=[a])
c = depset(direct=['c'], transitive=[b])
d = depset(direct=['d'], transitive=[b])

各項目は 1 回のみ言及してください。リストの場合は次のようになります。

a = ['a']
b = ['b', 'a']
c = ['c', 'b', 'a']
d = ['d', 'b', 'a']

この場合、'a' が 4 回言及されていることに注意してください。グラフが大きいほど、この問題は悪化する一方です。

以下に、依存関係を正しく使用して推移的情報をパブリッシュするルールの実装例を示します。これは O(N^2) ではないため、必要に応じてリストを使用してルールローカル情報を公開しても問題ありません。

MyProvider = provider()

def _impl(ctx):
  my_things = ctx.attr.things
  all_things = depset(
      direct=my_things,
      transitive=[dep[MyProvider].all_things for dep in ctx.attr.deps]
  )
  ...
  return [MyProvider(
    my_things=my_things,  # OK, a flat list of rule-local things only
    all_things=all_things,  # OK, a depset containing dependencies
  )]

詳細については、依存関係の概要ページをご覧ください。

depset.to_list() を呼び出さない

to_list() を使用してデプセットをフラットリストに強制変換できますが、その場合、通常は O(N^2) コストが発生します。デバッグ目的以外では、デプセットのフラット化は可能な限り避けてください。

よくある誤解は、<xx>_binary ルールなどのトップレベル ターゲットでのみデプセットをフラット化できるというものです。これは、ビルドグラフの各レベルで費用が累積されないためです。しかし、依存関係が重複するターゲット セットをビルドする場合は、O(N^2) のままです。これは、テスト //foo/tests/... をビルドするとき、または IDE プロジェクトをインポートするときに行われます。

depset への通話の数を減らす

ループ内で depset を呼び出すのは誤りがよくあります。非常に深いネストによる重複が発生し、パフォーマンスが低下します。次に例を示します。

x = depset()
for i in inputs:
    # Do not do that.
    x = depset(transitive = [x, i.deps])

このコードは簡単に置き換えることができます。まず、推移的依存関係を収集し、一度にすべてマージします。

transitive = []

for i in inputs:
    transitive.append(i.deps)

x = depset(transitive = transitive)

これは、リストの理解を使用することで軽減できる場合があります。

x = depset(transitive = [i.deps for i in inputs])

コマンドラインに gsuite.actions.args() を使用する

コマンドラインを作成するときは、ctx.actions.args() を使用してください。これにより、depset の展開が実行フェーズまで延期されます。

これにより、厳密に高速になるほかに、ルールのメモリ使用量が(場合によっては 90% 以上)削減されます。

コツをご紹介します。

  • 依存関係とリストを自分でフラット化するのではなく、引数として直接渡します。ctx.actions.args() 拡張されます。 依存関係のコンテンツを変更する必要がある場合は、ctx.actions.args#add を参照して、問題に適合するものがあるかどうかを確認します。

  • File#path を引数として渡していますか?必要ない。すべてのファイルは自動的にパスに変換され、展開時間に遅れます。

  • 文字列を連結して構成しないでください。メモリはルールのすべてのインスタンスで共有されるため、最適な文字列引数は定数です。

  • コマンドラインに対して引数が長すぎる場合、ctx.actions.args#use_param_file を使用して、ctx.actions.args() オブジェクトを条件付きまたは無条件でパラメータ ファイルに書き込めます。これは、アクションの実行時にバックグラウンドで行われます。params ファイルを明示的に制御する必要がある場合は、ctx.actions.write を使用して手動で記述できます。

例:

def _impl(ctx):
  ...
  args = ctx.actions.args()
  file = ctx.declare_file(...)
  files = depset(...)

  # Bad, constructs a full string "--foo=<file path>" for each rule instance
  args.add("--foo=" + file.path)

  # Good, shares "--foo" among all rule instances, and defers file.path to later
  # It will however pass ["--foo", <file path>] to the action command line,
  # instead of ["--foo=<file_path>"]
  args.add("--foo", file)

  # Use format if you prefer ["--foo=<file path>"] to ["--foo", <file path>]
  args.add(format="--foo=%s", value=file)

  # Bad, makes a giant string of a whole depset
  args.add(" ".join(["-I%s" % file.short_path for file in files])

  # Good, only stores a reference to the depset
  args.add_all(files, format_each="-I%s", map_each=_to_short_path)

# Function passed to map_each above
def _to_short_path(f):
  return f.short_path

推移アクション入力は depset にする必要があります

ctx.actions.run を使用してアクションを作成する場合、inputs フィールドが depset を受け入れることを忘れないでください。これは、入力が依存関係から推移的に収集される場合に使用します。

inputs = depset(...)
ctx.actions.run(
  inputs = inputs,  # Do *not* turn inputs into a list
  ...
)

吊り下げ

Bazel がハングしていると思われる場合は、Ctrl-\ を押すか、Bazel に SIGQUIT シグナル(kill -3 $(bazel info server_pid))を送信して、ファイル $(bazel info output_base)/server/jvm.out のスレッドダンプを取得します。

bazel がハングしていると bazel info を実行できない可能性があるため、output_base ディレクトリは通常、ワークスペース ディレクトリ内の bazel-<workspace> シンボリック リンクの親です。

パフォーマンス プロファイリング

JSON トレース プロファイルは、呼び出し中に Bazel が時間を費やした部分をすばやく把握するのに非常に役立ちます。

--experimental_command_profile フラグは、さまざまな種類の Java フライト レコーダー プロファイル(CPU 時間、経過時間、メモリ割り当て、ロック競合)をキャプチャするために使用できます。

--starlark_cpu_profile フラグを使用すると、すべての Starlark スレッドによる CPU 使用率の pprof プロファイルを書き込むことができます。

メモリのプロファイリング

Bazel には、ルールのメモリ使用量の確認に役立つ Memory Profiler が組み込まれています。問題がある場合は、ヒープをダンプして、問題の原因となっているコードの行を特定できます。

メモリ トラッキングの有効化

Bazel の呼び出しごとに、次の 2 つの起動フラグを渡す必要があります。

  STARTUP_FLAGS=\
  --host_jvm_args=-javaagent:<path to java-allocation-instrumenter-3.3.0.jar> \
  --host_jvm_args=-DRULE_MEMORY_TRACKER=1

これらのコマンドにより、サーバーがメモリ トラッキング モードで起動します。Bazel を 1 回でも呼び出すと、サーバーが再起動するため、最初からやり直す必要があります。

メモリ トラッカーの使用

例として、ターゲット foo を見て、その動作を確認します。分析のみを実行し、ビルド実行フェーズは実行しない場合は、--nobuild フラグを追加します。

$ bazel $(STARTUP_FLAGS) build --nobuild //foo:foo

次に、Bazel インスタンス全体のメモリ消費量を確認します。

$ bazel $(STARTUP_FLAGS) info used-heap-size-after-gc
> 2594MB

bazel dump --rules を使用して、ルールクラスごとに分類します。

$ bazel $(STARTUP_FLAGS) dump --rules
>

RULE                                 COUNT     ACTIONS          BYTES         EACH
genrule                             33,762      33,801    291,538,824        8,635
config_setting                      25,374           0     24,897,336          981
filegroup                           25,369      25,369     97,496,272        3,843
cc_library                           5,372      73,235    182,214,456       33,919
proto_library                        4,140     110,409    186,776,864       45,115
android_library                      2,621      36,921    218,504,848       83,366
java_library                         2,371      12,459     38,841,000       16,381
_gen_source                            719       2,157      9,195,312       12,789
_check_proto_library_deps              719         668      1,835,288        2,552
... (more output)

bazel dump --skylark_memory を使用して pprof ファイルを生成し、メモリの使用量を確認します。

$ bazel $(STARTUP_FLAGS) dump --skylark_memory=$HOME/prof.gz
> Dumping Starlark heap to: /usr/local/google/home/$USER/prof.gz

pprof ツールを使用してヒープを調査します。pprof -flame $HOME/prof.gz を使用してフレームグラフを作成することをおすすめします。

https://github.com/google/pprof から pprof を取得します。

次の行のアノテーションが付けられた、最もホットなコールサイトのテキストダンプを取得します。

$ pprof -text -lines $HOME/prof.gz
>
      flat  flat%   sum%        cum   cum%
  146.11MB 19.64% 19.64%   146.11MB 19.64%  android_library <native>:-1
  113.02MB 15.19% 34.83%   113.02MB 15.19%  genrule <native>:-1
   74.11MB  9.96% 44.80%    74.11MB  9.96%  glob <native>:-1
   55.98MB  7.53% 52.32%    55.98MB  7.53%  filegroup <native>:-1
   53.44MB  7.18% 59.51%    53.44MB  7.18%  sh_test <native>:-1
   26.55MB  3.57% 63.07%    26.55MB  3.57%  _generate_foo_files /foo/tc/tc.bzl:491
   26.01MB  3.50% 66.57%    26.01MB  3.50%  _build_foo_impl /foo/build_test.bzl:78
   22.01MB  2.96% 69.53%    22.01MB  2.96%  _build_foo_impl /foo/build_test.bzl:73
   ... (more output)