ルールを記述する際、パフォーマンスに関する最も一般的な落とし穴は、依存関係から蓄積されたデータを走査またはコピーすることです。ビルド全体で集計すると、これらのオペレーションは簡単に O(N^2) の時間またはスペースを消費する可能性があります。これを回避するには、depset を効果的に使用する方法を理解することが重要です。
これを正しく行うことは難しいため、Bazel には、間違いが発生した可能性のある場所を見つけるのに役立つメモリ プロファイラも用意されています。注意: 非効率的なルールを記述した場合のコストは、広範囲に使用されるまで明らかにならない場合があります。
depset を使用する
ルールの依存関係から情報をロールアップするときは、depsets を使用する必要があります。現在のルールにローカルな情報を公開する場合は、単純なリストまたは辞書のみを使用します。
depset は、共有を可能にするネストされたグラフとして情報を表します。
次のグラフについて考えてみましょう。
C -> B -> A
D ---^
各ノードは 1 つの文字列を公開します。depset を使用すると、データは次のようになります。
a = depset(direct=['a'])
b = depset(direct=['b'], transitive=[a])
c = depset(direct=['c'], transitive=[b])
d = depset(direct=['d'], transitive=[b])
各項目は 1 回のみ言及されます。リストを使用すると、次のように表示されます。
a = ['a']
b = ['b', 'a']
c = ['c', 'b', 'a']
d = ['d', 'b', 'a']
この場合、'a'
は 4 回参照されています。グラフが大きいほど、この問題は悪化します。
以下に、depset を正しく使用して伝播情報を公開するルールの実装例を示します。リストを使用してルールローカル情報を公開しても問題ありません。これは O(N^2) ではないためです。
MyProvider = provider()
def _impl(ctx):
my_things = ctx.attr.things
all_things = depset(
direct=my_things,
transitive=[dep[MyProvider].all_things for dep in ctx.attr.deps]
)
...
return [MyProvider(
my_things=my_things, # OK, a flat list of rule-local things only
all_things=all_things, # OK, a depset containing dependencies
)]
詳細については、depset の概要のページをご覧ください。
depset.to_list()
を呼び出さない
to_list()
を使用して depset をフラット リストに強制変換できますが、通常は O(N^2) の費用が発生します。可能であれば、デバッグ目的以外で depset をフラット化しない。
よくある誤解として、<xx>_binary
ルールなどのトップレベル ターゲットでのみ Depset をフラット化すれば、ビルドグラフの各レベルで費用が累積されないため、Depset を自由にフラット化できるというものがあります。ただし、依存関係が重複する一連のターゲットをビルドする場合、これは O(N^2) です。引き続きこれは、テスト //foo/tests/...
をビルドする場合や、IDE プロジェクトをインポートする場合に発生します。
depset
の呼び出し回数を減らす
ループ内で depset
を呼び出すのは間違いです。これにより、ネストの深い depset が作成され、パフォーマンスが低下する可能性があります。次に例を示します。
x = depset()
for i in inputs:
# Do not do that.
x = depset(transitive = [x, i.deps])
このコードは簡単に置き換えることができます。まず、伝播 depset を収集し、すべて一度に統合します。
transitive = []
for i in inputs:
transitive.append(i.deps)
x = depset(transitive = transitive)
リスト内包を使用すると、この処理を短縮できる場合があります。
x = depset(transitive = [i.deps for i in inputs])
コマンドラインで ctx.actions.args() を使用する
コマンドラインをビルドする場合は、ctx.actions.args() を使用する必要があります。これにより、depset の展開が実行フェーズに延期されます。
これにより、速度が大幅に向上するだけでなく、ルールのメモリ消費量が削減されます(90% 以上削減されることもあります)。
以下にいくつかのヒントをご紹介します。
自分でフラット化するのではなく、depset とリストを引数として直接渡します。
ctx.actions.args()
によって展開されます。depset の内容を変換する必要がある場合は、ctx.actions.args#add で、適切なものがないか確認します。File#path
を引数として渡していますか?必要ありません。ファイルは自動的にパスに変換され、展開時に延期されます。文字列を連結して作成しないでください。文字列引数には定数を使用することをおすすめします。これは、ルールのすべてのインスタンス間でメモリが共有されるためです。
引数がコマンドラインに対して長すぎる場合は、
ctx.actions.args#use_param_file
を使用して、ctx.actions.args()
オブジェクトを条件付きまたは無条件でパラメータ ファイルに書き込むことができます。これは、アクションの実行時にバックグラウンドで実行されます。params ファイルを明示的に制御する必要がある場合は、ctx.actions.write
を使用して手動で書き込むことができます。
例:
def _impl(ctx):
...
args = ctx.actions.args()
file = ctx.declare_file(...)
files = depset(...)
# Bad, constructs a full string "--foo=<file path>" for each rule instance
args.add("--foo=" + file.path)
# Good, shares "--foo" among all rule instances, and defers file.path to later
# It will however pass ["--foo", <file path>] to the action command line,
# instead of ["--foo=<file_path>"]
args.add("--foo", file)
# Use format if you prefer ["--foo=<file path>"] to ["--foo", <file path>]
args.add(format="--foo=%s", value=file)
# Bad, makes a giant string of a whole depset
args.add(" ".join(["-I%s" % file.short_path for file in files])
# Good, only stores a reference to the depset
args.add_all(files, format_each="-I%s", map_each=_to_short_path)
# Function passed to map_each above
def _to_short_path(f):
return f.short_path
伝播アクションの入力は depset である必要があります
ctx.actions.run を使用してアクションをビルドする場合は、inputs
フィールドが depset を受け入れることを忘れないでください。入力が依存関係から伝播的に収集される場合は常に使用します。
inputs = depset(...)
ctx.actions.run(
inputs = inputs, # Do *not* turn inputs into a list
...
)
吊り下げ
Bazel がハングしていると思われる場合は、Ctrl-\ キーを押すか、Bazel に SIGQUIT
シグナル(kill -3 $(bazel info server_pid)
)を送信して、ファイル $(bazel info output_base)/server/jvm.out
にスレッドダンプを取得します。
bazel がハングしている場合は bazel info
を実行できない可能性があるため、通常、output_base
ディレクトリはワークスペース ディレクトリ内の bazel-<workspace>
シンボリック リンクの親になります。
パフォーマンス プロファイリング
JSON トレース プロファイルは、呼び出し中に Bazel が費やした時間をすばやく把握するのに非常に役立ちます。
メモリのプロファイリング
Bazel には、ルールのメモリ使用量を確認できるメモリ プロファイラが組み込まれています。問題がある場合は、ヒープダンプを実行して、問題の原因となっているコード行を特定できます。
メモリ トラッキングの有効化
次の 2 つの起動フラグを Bazel の呼び出しごとに渡す必要があります。
STARTUP_FLAGS=\
--host_jvm_args=-javaagent:<path to java-allocation-instrumenter-3.3.0.jar> \
--host_jvm_args=-DRULE_MEMORY_TRACKER=1
これらは、メモリ トラッキング モードでサーバーを起動します。1 回の Bazel 呼び出しでこれらのオプションを忘れると、サーバーが再起動され、最初からやり直す必要があります。
メモリ トラッカーの使用
たとえば、ターゲット foo
を見て、その動作を確認します。分析のみを実行し、ビルド実行フェーズを実行しないようにするには、--nobuild
フラグを追加します。
$ bazel $(STARTUP_FLAGS) build --nobuild //foo:foo
次に、Bazel インスタンス全体で消費されるメモリ量を確認します。
$ bazel $(STARTUP_FLAGS) info used-heap-size-after-gc
> 2594MB
bazel dump --rules
を使用してルールクラスごとに分類します。
$ bazel $(STARTUP_FLAGS) dump --rules
>
RULE COUNT ACTIONS BYTES EACH
genrule 33,762 33,801 291,538,824 8,635
config_setting 25,374 0 24,897,336 981
filegroup 25,369 25,369 97,496,272 3,843
cc_library 5,372 73,235 182,214,456 33,919
proto_library 4,140 110,409 186,776,864 45,115
android_library 2,621 36,921 218,504,848 83,366
java_library 2,371 12,459 38,841,000 16,381
_gen_source 719 2,157 9,195,312 12,789
_check_proto_library_deps 719 668 1,835,288 2,552
... (more output)
bazel dump --skylark_memory
を使用して pprof
ファイルを生成して、メモリがどこに移動しているかを確認します。
$ bazel $(STARTUP_FLAGS) dump --skylark_memory=$HOME/prof.gz
> Dumping Starlark heap to: /usr/local/google/home/$USER/prof.gz
pprof
ツールを使用してヒープを確認します。最初は、pprof -flame $HOME/prof.gz
を使用してフレームグラフを取得することをおすすめします。
https://github.com/google/pprof から pprof
を取得します。
呼び出しサイトのテキスト ダンプ(行のアノテーション付き)を取得します。
$ pprof -text -lines $HOME/prof.gz
>
flat flat% sum% cum cum%
146.11MB 19.64% 19.64% 146.11MB 19.64% android_library <native>:-1
113.02MB 15.19% 34.83% 113.02MB 15.19% genrule <native>:-1
74.11MB 9.96% 44.80% 74.11MB 9.96% glob <native>:-1
55.98MB 7.53% 52.32% 55.98MB 7.53% filegroup <native>:-1
53.44MB 7.18% 59.51% 53.44MB 7.18% sh_test <native>:-1
26.55MB 3.57% 63.07% 26.55MB 3.57% _generate_foo_files /foo/tc/tc.bzl:491
26.01MB 3.50% 66.57% 26.01MB 3.50% _build_foo_impl /foo/build_test.bzl:78
22.01MB 2.96% 69.53% 22.01MB 2.96% _build_foo_impl /foo/build_test.bzl:73
... (more output)