เมื่อเขียนกฎ ข้อผิดพลาดด้านประสิทธิภาพที่พบบ่อยที่สุดคือการเรียกดูหรือคัดลอกข้อมูลที่รวบรวมจากข้อกําหนด เมื่อรวบรวมข้อมูลทั้งหมดในบิลด์ การดำเนินการเหล่านี้อาจใช้เวลาหรือพื้นที่เก็บข้อมูล O(N^2) ได้อย่างง่ายดาย คุณจึงควรทำความเข้าใจวิธีใช้ Depset อย่างมีประสิทธิภาพเพื่อหลีกเลี่ยงปัญหานี้
การดำเนินการนี้อาจทำได้ยาก Bazel จึงมีเครื่องมือวิเคราะห์หน่วยความจำที่จะช่วยคุณค้นหาจุดที่คุณอาจทำผิดพลาด โปรดทราบว่าค่าใช้จ่ายในการเขียนกฎที่ไม่มีประสิทธิภาพอาจไม่ชัดเจนจนกว่ากฎดังกล่าวจะใช้งานกันอย่างแพร่หลาย
ใช้ชุดข้อมูล
คุณควรใช้ depsets ทุกครั้งที่รวมข้อมูลจากข้อกําหนดของกฎ ใช้เฉพาะลิสต์หรือพจนานุกรมแบบธรรมดาเพื่อเผยแพร่ข้อมูลในกฎปัจจุบัน
ชุดข้อมูล Dependency แสดงข้อมูลเป็นกราฟที่ฝังอยู่ซึ่งช่วยให้แชร์ได้
ลองดูกราฟต่อไปนี้
C -> B -> A
D ---^
แต่ละโหนดจะเผยแพร่สตริงเดียว เมื่อใช้ชุดข้อมูล ข้อมูลจะมีลักษณะดังนี้
a = depset(direct=['a'])
b = depset(direct=['b'], transitive=[a])
c = depset(direct=['c'], transitive=[b])
d = depset(direct=['d'], transitive=[b])
โปรดทราบว่าแต่ละรายการจะกล่าวถึงเพียงครั้งเดียว เมื่อใช้รายการ คุณจะได้รับสิ่งต่อไปนี้
a = ['a']
b = ['b', 'a']
c = ['c', 'b', 'a']
d = ['d', 'b', 'a']
โปรดทราบว่าในกรณีนี้มีการพูดถึง 'a'
4 ครั้ง ปัญหานี้จะยิ่งแย่ลงเมื่อใช้กราฟขนาดใหญ่
ต่อไปนี้คือตัวอย่างการใช้งานกฎที่ใช้ depset อย่างถูกต้องเพื่อเผยแพร่ข้อมูลที่ส่งผ่าน โปรดทราบว่าคุณเผยแพร่ข้อมูลระดับกฎโดยใช้ลิสต์ได้หากต้องการ เนื่องจากการดำเนินการนี้ไม่ใช่ O(N^2)
MyProvider = provider()
def _impl(ctx):
my_things = ctx.attr.things
all_things = depset(
direct=my_things,
transitive=[dep[MyProvider].all_things for dep in ctx.attr.deps]
)
...
return [MyProvider(
my_things=my_things, # OK, a flat list of rule-local things only
all_things=all_things, # OK, a depset containing dependencies
)]
ดูข้อมูลเพิ่มเติมได้ที่หน้าภาพรวมของ Depset
หลีกเลี่ยงการโทรหา depset.to_list()
คุณสามารถบังคับให้ depset เป็นรายการแบบแบนโดยใช้ to_list()
แต่โดยทั่วไปแล้วการดำเนินการนี้จะส่งผลให้มีต้นทุนแบบ O(N^2) หากเป็นไปได้ ให้หลีกเลี่ยงการยุบชุดข้อมูล ยกเว้นเพื่อวัตถุประสงค์ในการแก้ไขข้อบกพร่อง
คําเข้าใจผิดที่พบบ่อยคือคุณสามารถยุบชุดข้อมูลอย่างอิสระได้หากทํากับเป้าหมายระดับบนสุดเท่านั้น เช่น กฎ <xx>_binary
เนื่องจากระบบจะไม่รวมค่าใช้จ่ายในแต่ละระดับของกราฟการสร้าง แต่วิธีนี้ยังคงเป็น O(N^2) เมื่อคุณสร้างชุดเป้าหมายที่มีความสัมพันธ์ซึ่งกันและกัน กรณีนี้จะเกิดขึ้นเมื่อคุณสร้างการทดสอบ //foo/tests/...
หรือเมื่อนําเข้าโปรเจ็กต์ IDE
ลดจํานวนการโทรเป็น depset
การเรียก depset
ภายในลูปมักเป็นข้อผิดพลาด ซึ่งอาจทําให้เกิด Depset ที่มีการฝังซ้อนกันมาก ซึ่งทํางานได้ไม่ดี เช่น
x = depset()
for i in inputs:
# Do not do that.
x = depset(transitive = [x, i.deps])
รหัสนี้เปลี่ยนได้ง่ายๆ ก่อนอื่น ให้รวบรวมชุดข้อมูล transitive แล้วผสานทั้งหมดพร้อมกัน
transitive = []
for i in inputs:
transitive.append(i.deps)
x = depset(transitive = transitive)
บางครั้งคุณอาจลดจำนวนการเรียกใช้นี้ได้ด้วยการใช้ลิสต์คอมเพรสชัน ดังนี้
x = depset(transitive = [i.deps for i in inputs])
ใช้ ctx.actions.args() สําหรับบรรทัดคําสั่ง
เมื่อสร้างบรรทัดคำสั่ง คุณควรใช้ ctx.actions.args() ซึ่งจะเลื่อนการขยายชุดข้อมูลไปยังระยะการดําเนินการ
นอกจากทำงานได้เร็วขึ้นแล้ว วิธีนี้ยังช่วยลดการใช้หน่วยความจําของกฎด้วย ซึ่งบางครั้งอาจลดได้กว่า 90%
ลองดูเคล็ดลับต่อไปนี้
ส่งชุดข้อมูลและลิสต์เป็นอาร์กิวเมนต์โดยตรงแทนการผสานชุดข้อมูลและลิสต์ด้วยตนเอง ระบบจะเพิ่มพื้นที่เก็บข้อมูลให้
ctx.actions.args()
GB หากต้องการเปลี่ยนรูปแบบเนื้อหา depset ให้ดูที่ ctx.actions.args#add เพื่อดูว่ามีอะไรที่ตรงกับความต้องการหรือไม่คุณส่ง
File#path
เป็นอาร์กิวเมนต์อยู่หรือไม่ ไม่จำเป็น ระบบจะเปลี่ยนไฟล์เป็นเส้นทางโดยอัตโนมัติ โดยจะเลื่อนไปไว้ที่เวลาขยายหลีกเลี่ยงการสร้างสตริงโดยการต่อสตริงเข้าด้วยกัน อาร์กิวเมนต์สตริงที่ดีที่สุดคือค่าคงที่ เนื่องจากระบบจะแชร์หน่วยความจำของอาร์กิวเมนต์นี้ระหว่างอินสแตนซ์ทั้งหมดของกฎ
หากอาร์กิวเมนต์ยาวเกินกว่าที่บรรทัดคำสั่งจะรองรับ ระบบจะเขียนออบเจ็กต์
ctx.actions.args()
ไปยังไฟล์พารามิเตอร์แบบมีเงื่อนไขหรือไม่มีเงื่อนไขได้โดยใช้ctx.actions.args#use_param_file
ซึ่งการดำเนินการนี้จะทําในเบื้องหลังเมื่อมีการดําเนินการ หากต้องการควบคุมไฟล์ params อย่างชัดแจ้ง คุณสามารถเขียนไฟล์ด้วยตนเองได้โดยใช้ctx.actions.write
ตัวอย่าง
def _impl(ctx):
...
args = ctx.actions.args()
file = ctx.declare_file(...)
files = depset(...)
# Bad, constructs a full string "--foo=<file path>" for each rule instance
args.add("--foo=" + file.path)
# Good, shares "--foo" among all rule instances, and defers file.path to later
# It will however pass ["--foo", <file path>] to the action command line,
# instead of ["--foo=<file_path>"]
args.add("--foo", file)
# Use format if you prefer ["--foo=<file path>"] to ["--foo", <file path>]
args.add(format="--foo=%s", value=file)
# Bad, makes a giant string of a whole depset
args.add(" ".join(["-I%s" % file.short_path for file in files])
# Good, only stores a reference to the depset
args.add_all(files, format_each="-I%s", map_each=_to_short_path)
# Function passed to map_each above
def _to_short_path(f):
return f.short_path
อินพุตการดําเนินการแบบทรานซิทีฟควรเป็นชุดข้อมูล
เมื่อสร้างการดําเนินการโดยใช้ ctx.actions.run โปรดอย่าลืมว่าช่อง inputs
ยอมรับ depset ใช้คำสั่งนี้ทุกครั้งที่รวบรวมอินพุตจากข้อกําหนดเบื้องต้นแบบทรานซิทีฟ
inputs = depset(...)
ctx.actions.run(
inputs = inputs, # Do *not* turn inputs into a list
...
)
แขวน
หาก Bazel ดูเหมือนจะค้าง ให้กด Ctrl-\ หรือส่งสัญญาณ SIGQUIT
(kill -3 $(bazel info server_pid)
) ไปยัง Bazel เพื่อดูการถ่ายโอนข้อมูลชุดข้อความในไฟล์ $(bazel info output_base)/server/jvm.out
เนื่องจากคุณอาจไม่สามารถเรียกใช้ bazel info
ได้หาก bazel ค้างอยู่ โดยปกติแล้วไดเรกทอรี output_base
จะเป็นไดเรกทอรีหลักของ bazel-<workspace>
ที่เป็นสัญลักษณ์ลิงก์ในไดเรกทอรีเวิร์กスペース
โปรไฟล์ประสิทธิภาพ
โปรไฟล์การติดตาม JSON มีประโยชน์มากในการทำความเข้าใจสิ่งที่ Bazel ใช้เวลาไปกับการดำเนินการเรียกใช้
การสร้างโปรไฟล์หน่วยความจำ
Bazel มาพร้อมกับเครื่องมือวิเคราะห์หน่วยความจำในตัวซึ่งช่วยตรวจสอบการใช้หน่วยความจำของกฎได้ หากพบปัญหา คุณสามารถถ่ายโอนข้อมูลกองเพื่อค้นหาบรรทัดโค้ดที่ทำให้เกิดปัญหาได้
การเปิดใช้การติดตามหน่วยความจํา
คุณต้องส่ง Flag เริ่มต้น 2 รายการนี้ไปยังการเรียกใช้ Bazel ทุกครั้ง
STARTUP_FLAGS=\
--host_jvm_args=-javaagent:<path to java-allocation-instrumenter-3.3.0.jar> \
--host_jvm_args=-DRULE_MEMORY_TRACKER=1
ซึ่งจะเริ่มต้นเซิร์ฟเวอร์ในโหมดการติดตามหน่วยความจํา หากคุณลืมดำเนินการเหล่านี้แม้แต่ในการเรียกใช้ Bazel เพียงครั้งเดียว เซิร์ฟเวอร์จะรีสตาร์ทและคุณจะต้องเริ่มใหม่
การใช้เครื่องมือติดตามหน่วยความจำ
ตัวอย่างเช่น ให้ดูที่เป้าหมาย foo
และดูว่าทําอะไร หากต้องการเรียกใช้การวิเคราะห์เท่านั้นและไม่เรียกใช้ระยะการทำงานของบิลด์ ให้เพิ่ม Flag --nobuild
$ bazel $(STARTUP_FLAGS) build --nobuild //foo:foo
ต่อไป ให้ดูว่าอินสแตนซ์ Bazel ทั้งหมดใช้หน่วยความจำเท่าใด
$ bazel $(STARTUP_FLAGS) info used-heap-size-after-gc
> 2594MB
แจกแจงตามคลาสกฎโดยใช้ bazel dump --rules
$ bazel $(STARTUP_FLAGS) dump --rules
>
RULE COUNT ACTIONS BYTES EACH
genrule 33,762 33,801 291,538,824 8,635
config_setting 25,374 0 24,897,336 981
filegroup 25,369 25,369 97,496,272 3,843
cc_library 5,372 73,235 182,214,456 33,919
proto_library 4,140 110,409 186,776,864 45,115
android_library 2,621 36,921 218,504,848 83,366
java_library 2,371 12,459 38,841,000 16,381
_gen_source 719 2,157 9,195,312 12,789
_check_proto_library_deps 719 668 1,835,288 2,552
... (more output)
ดูว่าหน่วยความจําถูกใช้ไปที่ไหนโดยสร้างไฟล์ pprof
ใช้ bazel dump --skylark_memory
$ bazel $(STARTUP_FLAGS) dump --skylark_memory=$HOME/prof.gz
> Dumping Starlark heap to: /usr/local/google/home/$USER/prof.gz
ใช้เครื่องมือ pprof
เพื่อตรวจสอบกอง จุดเริ่มต้นที่ดีคือการดูกราฟเปลวไฟโดยใช้ pprof -flame $HOME/prof.gz
ดาวน์โหลด pprof
จาก https://github.com/google/pprof
รับการดัมพ์ข้อความของเว็บไซต์ที่มีการโทรเข้ามากที่สุดพร้อมคำอธิบายประกอบด้วยบรรทัดต่อไปนี้
$ pprof -text -lines $HOME/prof.gz
>
flat flat% sum% cum cum%
146.11MB 19.64% 19.64% 146.11MB 19.64% android_library <native>:-1
113.02MB 15.19% 34.83% 113.02MB 15.19% genrule <native>:-1
74.11MB 9.96% 44.80% 74.11MB 9.96% glob <native>:-1
55.98MB 7.53% 52.32% 55.98MB 7.53% filegroup <native>:-1
53.44MB 7.18% 59.51% 53.44MB 7.18% sh_test <native>:-1
26.55MB 3.57% 63.07% 26.55MB 3.57% _generate_foo_files /foo/tc/tc.bzl:491
26.01MB 3.50% 66.57% 26.01MB 3.50% _build_foo_impl /foo/build_test.bzl:78
22.01MB 2.96% 69.53% 22.01MB 2.96% _build_foo_impl /foo/build_test.bzl:73
... (more output)