Kurallar

Sorun bildirme Kaynağı görüntüleme Nightly · 7.4 . 7.3 · 7.2 · 7.1 · 7.0 · 6.5

Kural, Bazel'in girişlerde gerçekleştirdiği ve bir dizi çıkış üreten bir dizi işlem tanımlar. Bu çıkışlara, kuralın uygulama işlevi tarafından döndürülen sağlayıcılarda referans verilir. Örneğin, bir C++ ikili kuralı şunları yapabilir:

  1. Bir dizi .cpp kaynak dosyası (giriş) alın.
  2. Kaynak dosyalarda g++ komutunu çalıştırın (işlem).
  3. Yürütülebilir çıktıyı ve diğer dosyaları içeren DefaultInfo sağlayıcısını iade edin kullanılabilir hale getirmektir.
  4. CcInfo sağlayıcısını, ve bağımlılıklarını konuşacağız.

Bazel açısından bakıldığında g++ ve standart C++ kitaplıkları da ekleyin. Kural yazarı olarak, yalnızca bir kurala kullanıcı tarafından sağlanan girişleri değil, aynı zamanda işlemleri yürütmek için gereken tüm araçları ve kitaplıkları da dikkate almanız gerekir.

Herhangi bir kural oluşturmadan veya değiştirmeden önce Bazel'in geliştirme aşamalarına göz atın. Üç noktayı anlamanız önemlidir, aşamalarından (yükleme, analiz ve yürütme) oluşur. Kurallar ile makrolar arasındaki farkı anlamak için makrolar hakkında bilgi edinmeniz de faydalı olacaktır. Başlamak için önce Kurallar Eğitimi'ni inceleyin. Ardından, bu sayfayı referans olarak kullanın.

Bazel'in kendisinde birkaç kural oluşturulmuştur. Bu yerel kurallar, örneğin cc_library ve java_binary, belirli diller için temel destek sağlar. Kendi kurallarınızı tanımlayarak Bazel'in doğal olarak desteklemediği diller ve araçlar için benzer destek ekleyebilirsiniz.

Bazel, Starlark'ın dili. Bu kurallar .bzl dosyalarına yazılır ve doğrudan BUILD dosyalarından yüklenebilir.

Kendi kuralınızı tanımlarken hangi özellikleri destekleyeceğine ve çıkışlarını nasıl oluşturacağına siz karar verirsiniz.

Kuralın implementation işlevi, analiz aşaması sırasındaki tam davranışını tanımlar. Bu işlev herhangi bir harici komut çalıştırmaz. Bunun yerine, bu araçtan yararlanmak için işlemleri sonraki aşamalarda devreye girerek kuralın çıktılarını gerekir.

Kural oluşturma

Bir .bzl dosyasında yeni bir kural tanımlamak için rule işlevini kullanın kuralına ekleyin ve sonucu genel bir değişkende depolayın. rule çağrısı, özellikleri ve uygulama işlevini belirtir:

example_library = rule(
    implementation = _example_library_impl,
    attrs = {
        "deps": attr.label_list(),
        ...
    },
)

Bu, example_library adlı bir kural türünü tanımlar.

rule çağrısı, kuralın executable çıkış (executable=True ile) veya özel olarak yürütülebilir bir test (test=True ile). İkincisi ise kural bir test kuralı ise ve kuralın adı _test ile bitmelidir.

Hedef örneği oluşturma

Kurallar BUILD dosyalarında yüklenebilir ve çağrılabilir:

load('//some/pkg:rules.bzl', 'example_library')

example_library(
    name = "example_target",
    deps = [":another_target"],
    ...
)

Bir oluşturma kuralına yapılan her çağrı değer döndürmez ancak bir hedef tanımlama yan etkisine sahiptir. Buna, kuralın tetiklenmesi denir. Bu, Hedefin özellikleri için yeni hedef ve değerler girin.

Kurallar, Starlark işlevlerinden çağrılabilir ve .bzl dosyalarına yüklenebilir. Kuralları çağıran Starlark işlevleri Starlark makroları olarak adlandırılır. Starlark makroları nihayetinde BUILD dosyalarından çağrılmalıdır ve yalnızca BUILD dosyalarının hedefleri örneklemek için değerlendirildiği yükleme aşamasında çağrılabilir.

Özellikler

Özellik, bir kural bağımsız değişkenidir. Özellikler, bir hedefin uygulanması için belirli değerler sağlayabilir veya diğer hedeflere atıfta bulunarak bağımlılık grafiği oluşturabilir.

srcs veya deps gibi kurala özgü özellikler, özellik adlarından şemalara (attr modülü kullanılarak oluşturulur) bir eşleme geçirilerek rule'in attrs parametresine aktarılarak tanımlanır. Şunlar gibi ortak özellikler name ve visibility, tüm kurallara dolaylı olarak eklenir. Ek özellikler özellikle yürütülebilir ve test kurallarına dolaylı olarak eklenir. Bir kurala dolaylı olarak eklenen özellikler, attrs parametresine iletilen sözlüğe dahil edilemez.

Bağımlılık özellikleri

Kaynak kodunu işleyen kurallar genellikle çeşitli bağımlılıkları işlemek için aşağıdaki özellikleri tanımlar:

  • srcs, hedefin işlemleri tarafından işlenen kaynak dosyaları belirtir. Özellik şeması genellikle, kuralın işlediği kaynak dosya türü için hangi dosya uzantılarının beklendiğini belirtir. Başlık dosyası içeren diller için kurallar genellikle bir hedef ve tüketicileri tarafından işlenen üstbilgiler için ayrı bir hdrs özelliği belirtir.
  • deps, bir hedef için kod bağımlılıklarını belirtir. Özellik şeması Bu bağımlıların hangi sağlayıcıları sağlaması gerektiğini belirtin. (Örneğin, cc_library, CcInfo sağlar.)
  • data, bir hedefe bağlı olan tüm yürütülebilir dosyalara çalışma zamanında kullanıma sunulacak dosyaları belirtir. Bu sayede, istediğiniz dosyaları belirtebilirsiniz.
example_library = rule(
    implementation = _example_library_impl,
    attrs = {
        "srcs": attr.label_list(allow_files = [".example"]),
        "hdrs": attr.label_list(allow_files = [".header"]),
        "deps": attr.label_list(providers = [ExampleInfo]),
        "data": attr.label_list(allow_files = True),
        ...
    },
)

Bunlar bağımlılık özelliklerine örnektir. Belirttiği herhangi bir özellik: giriş etiketi ( attr.label_list, attr.label veya attr.label_keyed_string_dict) belirli bir türdeki bağımlılıkları belirtir arasında bir hedef ile etiketleri (veya ilgili Label nesne) söz konusu özellikte listelenir. tanımlanmıştır. Bu etiketlerin depolama alanı ve muhtemelen yolu, tanımlanan hedefe göre çözülür.

example_library(
    name = "my_target",
    deps = [":other_target"],
)

example_library(
    name = "other_target",
    ...
)

Bu örnekte other_target, my_target'un bir bağımlısıdır ve bu nedenle önce other_target analiz edilir. Hedeflerin bağımlılık grafiğinde döngü varsa hata oluşur.

Gizli özellikler ve gizli bağımlılıklar

Varsayılan değere sahip bir bağımlılık özelliği dolaylı bağımlılık oluşturur. Google kullanıcının aramadığı veya almadığı hedef grafiğin bir parçası olduğu için, BUILD dosyasında belirtin. Kullanıcılar çoğu zaman kuralın kullandığı aracı belirtmek istemediğinden, kural ile araç (derleme zamanı bağımlılığı, derleyici gibi) arasındaki ilişkiyi sabit kodlamak için örtülü bağımlılıklar kullanışlıdır. Kuralın uygulama işlevinde bu, diğer bağımlılıklarla aynı şekilde ele alınır.

Kullanıcının bu değeri geçersiz kılmasına izin vermeden örtülü bir bağımlılık sağlamak istiyorsanız özelliği, alt çizgiyle (_) başlayan bir adla gizli yapabilirsiniz. Gizli özelliklerde varsayılan değerler olmalıdır. Özel özellikleri genellikle yalnızca gizli bağımlılıklarda kullanmak mantıklıdır.

example_library = rule(
    implementation = _example_library_impl,
    attrs = {
        ...
        "_compiler": attr.label(
            default = Label("//tools:example_compiler"),
            allow_single_file = True,
            executable = True,
            cfg = "exec",
        ),
    },
)

Bu örnekte, example_library türündeki her hedefin şu derleyicide bağımlılık: //tools:example_compiler. Bu, kullanıcı etiketini giriş olarak iletmemiş olsa bile example_library'ün uygulama işlevinin derleyiciyi çağıran işlemler oluşturmasına olanak tanır. Başlangıç _compiler gizli bir özelliktir. Bu özelliğe uyulması gerekir: ctx.attr._compiler bu kuralın tüm hedeflerinde her zaman //tools:example_compiler değerini gösterir türü. Alternatif olarak, özelliği alt çizgi olmadan compiler olarak adlandırabilir ve varsayılan değeri koruyabilirsiniz. Bu, kullanıcıların gerekirse farklı bir derleyici kullanmalarına olanak tanır ancak derleyicinin etiketi hakkında bilgi sahibi olmalarını gerektirmez.

Örtük bağımlılıklar genellikle kural uygulamasıyla aynı depoda bulunan araçlar için kullanılır. Araç yürütme platformuna veya farklı bir depoya kuralının söz konusu aracı bir araç zincirinden edinmesi gerekir.

Çıkış özellikleri

Çıkış özellikleri, örneğin attr.output ve attr.output_list ise bir çıkış dosyası bildirin. anlamına gelir. Bu özellikler, bağımlılık özelliklerinden iki şekilde farklıdır:

  • Tanımlanan hedeflere başvurmak yerine çıkış dosyası hedeflerini tanımlarlar olduğunu anlayabilir.
  • Çıkış dosyası hedefleri, şunun yerine örneklenen kural hedefine dayanır: tam tersi de geçerlidir.

Çıkış özellikleri genellikle yalnızca bir kuralın, hedef ada dayandırılamayan kullanıcı tanımlı adlarla çıkış oluşturması gerektiğinde kullanılır. Bir kuralın bir çıkış özelliği varsa kural genellikle out veya outs olarak adlandırılır.

Çıkış özellikleri, önceden bildirilmiş çıkışlar oluşturmanın tercih edilen yoludur. Bu çıkışlara özel olarak bağımlı olunabilir veya komut satırında istenebilir.

Uygulama işlevi

Her kural için bir implementation işlevi gerekir. Bu işlevler yalnızca analiz aşamasında olması ve yükleme aşamasında oluşturulan hedeflerin grafik eylemlerin belirlenmesine yardımcı olur. Dolayısıyla, uygulama işlevleri dosya okuyamaz veya yazamaz.

Kural uygulama işlevleri genellikle özeldir (başında alt çizgi bulunan bir adla adlandırılır). Kurallarıyla aynı şekilde adlandırılırlar ancak sonlarına _impl eklenir.

Uygulama işlevleri tam olarak bir parametre alır: kural bağlamı, geleneksel olarak ctx olarak adlandırılır. Sağlayıcıların listesini döndürürler.

Hedefler

Bağımlılıklar, analiz sırasında Target nesneleri olarak temsil edilir. Bu nesneler, hedefin uygulama işlevi yürütüldüğünde oluşturulan sağlayıcıları içerir.

ctx.attr her bir kullanıcının adına karşılık gelen alanlar içeriyor Her bir doğrudan temsil eden Target nesneyi içeren bağımlılık özelliği bu özellik üzerinden gelen bağımlılığı ifade eder. label_list özellikleri için bu, Targets öğelerinin bir listesidir. label özellikleri için bu, tek bir Target veya None değeridir.

Bir hedefin uygulama işlevi, sağlayıcı nesnelerinin bir listesini döndürür:

return [ExampleInfo(headers = depset(...))]

Bunlara dizin gösterimi ([]) kullanılarak erişilebilir. Sağlayıcı türü şu şekildedir: kullanabilirsiniz. Bunlar, Starlark'ta tanımlanan özel sağlayıcılar veya Starlark olarak kullanılabilen yerel kural sağlayıcıları kullanabilirsiniz.

Örneğin, bir kural hdrs özelliği aracılığıyla üstbilgi dosyalarını alır ve bunları hedefin ve tüketicilerinin derleme işlemlerine sağlarsa bunları aşağıdaki gibi toplayabilir:

def _example_library_impl(ctx):
    ...
    transitive_headers = [hdr[ExampleInfo].headers for hdr in ctx.attr.hdrs]

Hedefin uygulama işlevinden sağlayıcı nesneleri listesi yerine struct döndürüldüğü eski stil için:

return struct(example_info = struct(headers = depset(...)))

Sağlayıcılar, Target nesnesinin ilgili alanından alınabilir:

transitive_headers = [hdr.example_info.headers for hdr in ctx.attr.hdrs]

Bu stilin kullanılması önerilmez ve kurallar bu stilde taşınmamalıdır.

Dosyalar

Dosyalar File nesneleriyle temsil edilir. Bazel, analiz aşamasında dosya G/Ç işlemi gerçekleştirmediğinden bu nesneler, dosya içeriğini doğrudan okumak veya yazmak için kullanılamaz. Bunun yerine, işlem grafiğinin parçalarını oluşturmak için işlem yayınlayan işlevlere (ctx.actions bölümüne bakın) iletilir.

File, bir kaynak dosya veya oluşturulmuş bir dosya olabilir. Oluşturulan her dosya tam olarak bir işlemin sonucu olmalıdır. Kaynak dosyalar şunun çıktısı olamaz: herhangi bir işlem.

Her bir bağımlılık özelliği için, karşılık gelen ctx.files, tüm varsayılan çıkışların listesini içerir bağımlılıklarını görebilirsiniz:

def _example_library_impl(ctx):
    ...
    headers = depset(ctx.files.hdrs, transitive=transitive_headers)
    srcs = ctx.files.srcs
    ...

ctx.file, şunlar için tek bir File veya None içerir: özellikleri allow_single_file=True olarak ayarlanmış bağımlılık özellikleri. ctx.executable, ctx.file ile aynı şekilde davranır ancak yalnızca özellikleri executable=True olarak ayarlanmış bağımlılık özelliklerine ilişkin alanları içerir.

Çıktıları beyan etme

Analiz aşamasında, bir kuralın uygulama işlevi çıkışlar oluşturabilir. Yükleme aşamasında tüm etiketlerin bilinmesi gerektiğinden, bu ek etiketler çıkışların etiketi yok. Çıkışlar için File nesne aşağıdakileri kullanarak oluşturulabilir: ctx.actions.declare_file ve ctx.actions.declare_directory. Çıktıların adları genellikle hedefin adına göre belirlenir (ctx.label.name):

def _example_library_impl(ctx):
  ...
  output_file = ctx.actions.declare_file(ctx.label.name + ".output")
  ...

Çıkış özellikleri için oluşturulanlar gibi önceden bildirilmiş çıkışlar için ctx.outputs'nin ilgili alanlarından File nesneleri alınabilir.

İşlemler

Eylemde, kontrol grubu için bir dizi girdiden bir dizi çıkışın nasıl oluşturulacağını örnek: "hello.c'de gcc'yi çalıştır ve hello.o'yu al". Bir eylem oluşturulduğunda Bazel komutu hemen çalıştırmaz. Projeyi bir bağımlılık grafiğine kaydeder, çünkü bir eylem, bir başka işlemin sonucuna bağlı olabilir. Örneğin, C'de, bağlayıcı, derleyiciden sonra çağrılmalıdır.

İşlem oluşturan genel amaçlı işlevler ctx.actions içinde tanımlanır:

ctx.actions.args, verimli bir şekilde kullanılabilir. argümanları biriktirir. Yürütme zamanına kadar depsetlerin düzleştirilmesini önler:

def _example_library_impl(ctx):
    ...

    transitive_headers = [dep[ExampleInfo].headers for dep in ctx.attr.deps]
    headers = depset(ctx.files.hdrs, transitive=transitive_headers)
    srcs = ctx.files.srcs
    inputs = depset(srcs, transitive=[headers])
    output_file = ctx.actions.declare_file(ctx.label.name + ".output")

    args = ctx.actions.args()
    args.add_joined("-h", headers, join_with=",")
    args.add_joined("-s", srcs, join_with=",")
    args.add("-o", output_file)

    ctx.actions.run(
        mnemonic = "ExampleCompile",
        executable = ctx.executable._compiler,
        arguments = [args],
        inputs = inputs,
        outputs = [output_file],
    )
    ...

İşlemler, giriş dosyalarının bir listesini veya depset'ini alır ve çıkış dosyalarının (boş olmayan) bir listesini oluşturur. Giriş ve çıkış dosyaları grubu, analiz aşamasından geçti. Bağımlılıklardan gelen sağlayıcılar da dahil olmak üzere özelliklerin değerine bağlı olabilir ancak yürütmenin sonucuna bağlı olamaz. Örneğin, işleminiz sıkıştırılmış dosya açma komutunu çalıştırıyorsa hangi dosyaların şişirilmesini beklediğinizi belirtmelidir (sıkıştırmayı açmadan önce). Dahili olarak değişken sayıda dosya oluşturan işlemler, bu dosyaları tek bir dosyaya (ör. zip, tar veya başka bir arşiv biçimi) sarmalayabilir.

İşlemlerde tüm girişler listelenmelidir. Kullanılmayan girişlerin girilmesi ancak verimsizdir.

İşlemler tüm çıkışlarını oluşturmalıdır. Başka dosyalar yazabilirler ama Çıktılarda olmayan hiçbir şey tüketicilere sunulmayacaktır. Tanımlanan tüm çıkışlar bir işlem tarafından yazılmalıdır.

Eylemler yalın işlevlerle karşılaştırılabilir: Yalnızca giriş yapmalı ve bilgisayar bilgilerine, kullanıcı adı, saat ve ağ veya G/Ç cihazları (okuma girişleri ve yazma çıkışları hariç) Bu önemlidir. Çünkü çıktı, önbelleğe alınıp yeniden kullanılır.

Bağımlılıklar Bazel tarafından çözülür. Bazel, hangi işlemlerin yürütüleceğine karar verir. Bağımlılık grafiğinde döngü varsa bu bir hatadır. Bir işlemin oluşturulması, işlemin yürütüleceğini garanti etmez. Bu, işlemin çıktılarının derleme için gerekli olup olmadığına bağlıdır.

Sağlayıcılar

Sağlayıcılar, bir kuralın kendisine bağlı diğer kurallara gösterdiği bilgi parçalarıdır. Bu veriler arasında çıkış dosyaları, kitaplıklar, bir aracın komut satırında iletilecek parametreler veya hedefin tüketicilerinin bilmesi gereken başka herhangi bir şey bulunabilir.

Bir kuralın uygulama işlevi yalnızca örneklendirilmiş hedefin doğrudan bağımlılıklarındaki sağlayıcıları okuyabildiğinden, kuralların hedefin tüketicileri tarafından bilinmesi gereken tüm bilgileri, genellikle bir depset içinde toplayarak hedefin bağımlılıklarından iletmesi gerekir.

Bir hedefin sağlayıcıları, tarafından döndürülen Provider nesnelerin listesi ile belirtilir işlevi görür.

Eski uygulama işlevleri, uygulama işlevi struct sağlayıcı nesneleridir. Bu stilin kullanılması önerilmez ve kurallar bu stilde taşınmamalıdır.

Varsayılan çıkışlar

Bir hedefin varsayılan çıkışları, aşağıdaki durumlarda varsayılan olarak istenen çıkışlardır: komut satırında derleme için hedef istenir. Örneğin, java_library hedefi //pkg:foo için varsayılan çıkış olarak foo.jar kullanılıyor. bazel build //pkg:foo komutu tarafından oluşturulur.

Varsayılan çıkışlar şu parametrenin files parametresiyle belirtilir: DefaultInfo:

def _example_library_impl(ctx):
    ...
    return [
        DefaultInfo(files = depset([output_file]), ...),
        ...
    ]

DefaultInfo, bir kural uygulaması veya files tarafından döndürülmezse parametresi belirtilmemiş, DefaultInfo.files varsayılan olarak tümü önceden bildirilmiş çıkışlar (genellikle çıkış özellikleri).

İşlem gerçekleştiren kurallar, bu çıktıların doğrudan kullanılması beklenmese bile varsayılan çıktılar sağlamalıdır. Grafikte bulunmayan işlemler istenen çıkışlar kısaltılır. Bir çıktı yalnızca hedefin tüketicileri tarafından kullanılıyorsa hedef ayrı olarak oluşturulduğunda bu işlemler gerçekleştirilmez. Yalnızca başarısız hedefi yeniden oluşturmak hatayı yeniden oluşturmayacağından bu durum, hata ayıklamayı daha zor hale getirir.

Çalışma dosyaları

Çalıştırma dosyaları, bir hedef tarafından çalışma zamanında kullanılan bir dosya kümesidir. süre) ekleyebilirsiniz. Bazel, yürütme aşamasında çalışma dosyalarına işaret eden sembolik bağlantılar içeren bir dizin ağacı oluşturur. Bu aşama ortamına ekleyebilirsiniz.

Çalıştırma dosyaları, kural oluşturma sırasında manuel olarak eklenebilir. runfiles nesneleri, kural bağlamındaki runfiles yöntemi tarafından ctx.runfiles oluşturulabilir ve DefaultInfo'deki runfiles parametresine iletilebilir. Yürütülebilir çıktısı: executable rules (yürütülebilir kurallar), çalıştırma dosyalarına dolaylı olarak eklenir.

Bazı kurallar, genellikle data; çıkışları bir hedef runfiles. Runfile'ler, data'ten ve genellikle srcs (ilişkili data'ye sahip filegroup hedefler içerebilir) ve deps'tan da birleştirilmelidir.

def _example_library_impl(ctx):
    ...
    runfiles = ctx.runfiles(files = ctx.files.data)
    transitive_runfiles = []
    for runfiles_attr in (
        ctx.attr.srcs,
        ctx.attr.hdrs,
        ctx.attr.deps,
        ctx.attr.data,
    ):
        for target in runfiles_attr:
            transitive_runfiles.append(target[DefaultInfo].default_runfiles)
    runfiles = runfiles.merge_all(transitive_runfiles)
    return [
        DefaultInfo(..., runfiles = runfiles),
        ...
    ]

Özel sağlayıcılar

Sağlayıcılar, provider kullanılarak tanımlanabilir. işlevini kullanın:

ExampleInfo = provider(
    "Info needed to compile/link Example code.",
    fields={
        "headers": "depset of header Files from transitive dependencies.",
        "files_to_link": "depset of Files from compilation.",
    })

Kural uygulama işlevleri daha sonra sağlayıcı örneklerini oluşturup döndürebilir:

def _example_library_impl(ctx):
  ...
  return [
      ...
      ExampleInfo(
          headers = headers,
          files_to_link = depset(
              [output_file],
              transitive = [
                  dep[ExampleInfo].files_to_link for dep in ctx.attr.deps
              ],
          ),
      )
  ]
Sağlayıcıların özel olarak başlatılması

Özel ön işleme ve doğrulama mantığıyla bir sağlayıcının oluşturulmasını korumak mümkündür. Bu, tüm iletişim türlerinin belirli değişkenliklere uyum sağlar veya kullanıcılara örnek alınıyor.

Bu işlem, provider işlevine bir init geri çağırma işlevi geçirilerek yapılır. Bu geri çağırma işlevi sağlanırsa provider()'ün döndürülen türü, iki değerden oluşan bir tuple olarak değişir: init kullanılmadığında normal döndürülen değer olan sağlayıcı simgesi ve "ham kurucu".

Bu durumda, sağlayıcı sembolü çağrıldığında doğrudan yeni bir örnek döndürmek yerine bağımsız değişkenleri init geri çağırma işlevine iletir. Geri çağırma işlevinin döndürdüğü değer, alan adlarını (dizeleri) değerlerle eşleyen bir sözlük olmalıdır. Bu, yeni örneğin alanlarını başlatmak için kullanılır. Geri çağırma işlevinin herhangi bir imzaya sahip olabileceğini ve bağımsız değişkenler imzayla eşleşmezse geri çağırma işlevi doğrudan çağrılmış gibi bir hata bildirildiğini unutmayın.

Buna karşılık, ham oluşturucu init geri çağırmasını atlar.

Aşağıdaki örnekte, bağımsız değişkenlerini önceden işlemek ve doğrulamak için init kullanılmaktadır:

# //pkg:exampleinfo.bzl

_core_headers = [...]  # private constant representing standard library files

# It's possible to define an init accepting positional arguments, but
# keyword-only arguments are preferred.
def _exampleinfo_init(*, files_to_link, headers = None, allow_empty_files_to_link = False):
    if not files_to_link and not allow_empty_files_to_link:
        fail("files_to_link may not be empty")
    all_headers = depset(_core_headers, transitive = headers)
    return {'files_to_link': files_to_link, 'headers': all_headers}

ExampleInfo, _new_exampleinfo = provider(
    ...
    init = _exampleinfo_init)

export ExampleInfo

Ardından, kural uygulaması sağlayıcıyı aşağıdaki gibi örneklendirebilir:

    ExampleInfo(
        files_to_link=my_files_to_link,  # may not be empty
        headers = my_headers,  # will automatically include the core headers
    )

Ham oluşturucu, alternatif kamu fabrikası işlevlerini tanımlamak için kullanılabilir init mantığına uygun değildir. Örneğin, exampleinfo.bzl dosyasında şunları tanımlayabiliriz:

def make_barebones_exampleinfo(headers):
    """Returns an ExampleInfo with no files_to_link and only the specified headers."""
    return _new_exampleinfo(files_to_link = depset(), headers = all_headers)

Ham kurucu genellikle adı alt çizgiyle başlayan bir değişkene (yukarıdaki _new_exampleinfo) bağlanır. Böylece kullanıcı kodu, kurucuyu yükleyemez ve rastgele sağlayıcı örnekleri oluşturamaz.

init'ün başka bir kullanımı, kullanıcının sağlayıcı simgesini tamamen çağırmasını engellemek ve bunun yerine kullanıcıyı fabrika işlevini kullanmaya zorlamaktır:

def _exampleinfo_init_banned(*args, **kwargs):
    fail("Do not call ExampleInfo(). Use make_exampleinfo() instead.")

ExampleInfo, _new_exampleinfo = provider(
    ...
    init = _exampleinfo_init_banned)

def make_exampleinfo(...):
    ...
    return _new_exampleinfo(...)

Yürütülebilir kurallar ve test kuralları

Yürütülebilir kurallar, bazel run komutu tarafından çağrılabilecek hedefleri tanımlar. Test kuralları, yürütülebilir özel bir tür yürütülebilir kuraldır. Yürütülebilir kurallar; hedefler de bazel test komutuyla çağrılır. Yürütülebilir ve test kuralları, ilgili executable veya rule çağrısında True adlı kullanıcıya yönelik test bağımsız değişkeni:

example_binary = rule(
   implementation = _example_binary_impl,
   executable = True,
   ...
)

example_test = rule(
   implementation = _example_binary_impl,
   test = True,
   ...
)

Test kurallarının adları _test ile biten adlara sahip olmalıdır. (Test hedef adları da genellikle kural gereği _test ile biter ancak bu zorunlu değildir.) Test dışı kurallarda bu son ek bulunmamalıdır.

Her iki kural türü de run veya test komutları tarafından çağrılacak, yürütülebilir bir çıkış dosyası (önceden bildirilmiş olabilir veya bildirilmemiş olabilir) oluşturmalıdır. Anlatmak için Bir kural çıkışlarından hangisinin bu yürütülebilir olarak kullanılacağını Bazel, bunu Döndürülen DefaultInfo işlevinin executable bağımsız değişkeni sağlar. Bu executable, kuralın varsayılan çıkışlarına eklenir (böylece hem executable hem de files adlı cihaza iletmesi gerekmez). Aynı zamanda, runfiles eklenir:

def _example_binary_impl(ctx):
    executable = ctx.actions.declare_file(ctx.label.name)
    ...
    return [
        DefaultInfo(executable = executable, ...),
        ...
    ]

Bu dosyayı oluşturan işlem, dosyadaki yürütülebilir biti ayarlamalıdır. Örneğin, ctx.actions.run veya Bunun yapılması gereken ctx.actions.run_shell işlemi işlem tarafından çağrılan temel araç tarafından uygulanır. ctx.actions.write işlemi için is_executable=True değerini iletin.

Eski davranış olarak, yürütülebilir kurallarda önceden tanımlanmış özel ctx.outputs.executable çıkışı. Bu dosya, DefaultInfo kullanarak bir uygulama belirtmezseniz varsayılan olarak yürütülebilir; olmaması gerekir geri alınamaz. Bu çıkış mekanizması, analiz sırasında yürütülebilir dosyanın adını özelleştirmeyi desteklemediği için desteği sonlandırılmıştır.

Örneklere bakın yürütülebilir kural ve test kuralını inceleyin.

Yürütülebilir kurallar ve test kurallarının doğrudan tanımlanmış özellikleri vardır. tüm kurallara uymalıdır. Varsayılan dolaylı olarak eklenen özellikler değiştirilemez ancak özel bir kuralı Starlark makrosu içine sarmalayarak varsayılan:

def example_test(size="small", **kwargs):
  _example_test(size=size, **kwargs)

_example_test = rule(
 ...
)

Runfiles konumu

Yürütülebilir bir hedef bazel run (veya test) ile çalıştırıldığında, Runfiles dizini yürütülebilir dosyanın bitişiğindedir. Yollar aşağıdaki gibi ilişkilidir:

# Given launcher_path and runfile_file:
runfiles_root = launcher_path.path + ".runfiles"
workspace_name = ctx.workspace_name
runfile_path = runfile_file.short_path
execution_root_relative_path = "%s/%s/%s" % (
    runfiles_root, workspace_name, runfile_path)

Runfiles dizininin altındaki File yolu şuna karşılık gelir: File.short_path

Doğrudan bazel tarafından yürütülen ikili program, kök dizesine bitişik runfiles dizini. Ancak çalışma dosyalarından from adlı ikili dosyalar aynı varsayımı yapamaz. Bu sorunu azaltmak için her ikili, bir ortam veya komut satırı bağımsız değişkeni/işareti kullanarak çalıştırma dosyası kökünü parametre olarak kabul etmenin bir yolunu sağlamalıdır. Bu, ikili programların doğru standart çalıştırma dosyası kökünü iletmesine olanak tanır içine koymamız gereken bir durumdur. Bu ayar yapılmazsa bir ikili, çağrılan ilk ikili olduğunu tahmin edebilir ve bitişik bir çalıştırma dosyası dizini arayabilir.

İleri düzey konular

Çıkış dosyaları isteğinde bulunma

Tek bir hedefin birden fazla çıkış dosyası olabilir. Bir bazel build komutu çalıştırıldığında, komuta verilen hedeflerin bazılarının istendiği kabul edilir. Bazel yalnızca istenen bu dosyaları ve doğrudan veya dolaylı olarak bu dosyalara bağlı olan dosyaları derleyebilir. (İşlem grafiği açısından Bazel yalnızca istenen dosyaların geçişli bağımlılıkları olarak erişilebilen işlemleri yürütür.)

Varsayılan çıkışlara ek olarak, komut satırında açıkça istenebilecek herhangi bir önceden bildirilmiş çıkış vardır. Kurallar, çıktı özellikleri aracılığıyla önceden tanımlanmış çıkışları belirtebilir. Bu durumda kullanıcı, kuralı örneklendirirken çıkışlar için etiketleri açıkça seçer. Çıkış özellikleri için File nesneleri elde etmek üzere ctx.outputs'in ilgili özelliğini kullanın. Kurallar, hedef ada göre önceden bildirilmiş çıkışları dolaylı olarak tanımlayabilir ancak bu özelliğin desteği sonlandırılmıştır.

Varsayılan çıkışlara ek olarak, birlikte istenebilecek çıkış dosyası koleksiyonları olan çıkış grupları da vardır. Bu istekler --output_groups. Örneğin, Örneğin, //pkg:mytarget hedefi debug_files içeren bir kural türündeyse bu dosyalar bazel build //pkg:mytarget --output_groups=debug_files çalıştırılarak oluşturulabilir. Önceden tanımlanmamış çıkışların etiketi olmadığından yalnızca varsayılan çıkışlarda veya bir çıkış grubunda görünerek istenebilirler.

Çıkış grupları, OutputGroupInfo sağlayıcısıyla belirtilebilir. Birçok yerleşik sağlayıcının aksine OutputGroupInfo'ün, çıkış gruplarını tanımlamak için rastgele adlara sahip parametreler alabileceğini unutmayın:

def _example_library_impl(ctx):
    ...
    debug_file = ctx.actions.declare_file(name + ".pdb")
    ...
    return [
        DefaultInfo(files = depset([output_file]), ...),
        OutputGroupInfo(
            debug_files = depset([debug_file]),
            all_files = depset([output_file, debug_file]),
        ),
        ...
    ]

Ayrıca çoğu sağlayıcının aksine OutputGroupInfo, hem aspect ve bu özelliğin uygulandığı kural hedefi, ancak aynı çıkış gruplarını tanımlamazlar. Bu durumda, ortaya çıkan sağlayıcılar birleştirilir.

OutputGroupInfo değerinin genellikle bir hedeften tüketicilerinin işlemlerine belirli dosya türlerini iletmek için kullanılmaması gerektiğini unutmayın. Tanımla kurallara özel sağlayıcılar kullanabilirsiniz.

Yapılandırmalar

Farklı bir mimari için C++ ikili programı derlemek istediğinizi düşünün. Derleme karmaşık olabilir ve birden fazla adım içerebilir. Derleyiciler ve kod oluşturucular gibi bazı ara ikili dosyaların yürütme platformunda (barındırma sunucunuz veya uzak bir yürütücü olabilir) çalıştırılması gerekir. Nihai çıkış gibi bazı ikili dosyalar, hedef mimari için derlenmelidir.

Bu nedenle, Bazel'in "yapılandırmalar" daha fazla bilgi edineceksiniz. İlgili içeriği oluşturmak için kullanılan en üstteki hedefler (komut satırında istenenler) "target" yürütme platformunda çalışması gereken araçlar ise "exec" içinde yerleşik olarak yapılandırma. Kurallar, yapılandırmaya bağlı olarak farklı işlemler oluşturabilir (ör. derleyiciye iletilen CPU mimarisini değiştirmek için). Bazı durumlarda, farklı cihazlar için aynı kitaplık yapılandırmanın üç yolu vardır. Bu durumda, analiz edilir ve muhtemelen birden çok kez oluşturulur.

Varsayılan olarak Bazel, hedefin kendisi, başka bir deyişle geçişler olmadan. Bağımlılık hedefin oluşturulması için gereken özel bir araç varsa, exec yapılandırmasına geçiş olduğunu belirtir. Bu, aracın ve onun tüm özelliklerini bağımlılıkları belirlemenize yardımcı olur.

Her bir bağımlılık özelliğinde, bağımlılıkların olup olmadığına karar vermek için cfg kullanabilirsiniz. aynı yapılandırmada derlemesi veya bir yönetici yapılandırmasına geçiş yapması gerekir. Bir bağımlılık özelliğinde executable=True işareti varsa cfg açıkça ayarlanmalıdır. Bu, hatalı kullanım için yanlışlıkla bir araç oluşturulmasını önlemek amacıyla yapılandırma. Örneği inceleyin

Genel olarak, çalışma zamanında ihtiyaç duyulacak kaynaklar, bağımlı kitaplıklar ve yürütülebilir dosyalar aynı yapılandırmayı kullanabilir.

Derlemenin bir parçası olarak yürütülen araçlar (derleyiciler veya kod oluşturucular gibi) yürütülmelidir. Bu durumda, özellikte cfg="exec" değerini belirtin.

Aksi takdirde, çalışma zamanında kullanılan yürütülebilir dosyalar (örneğin bir testin parçası olarak) oluşturulmalıdır. Bu durumda, özellikte cfg="target" değerini belirtin.

cfg="target" aslında herhangi bir şey yapmaz. Tam anlamıyla kullanıcıların kural tasarımcılarının amaçlarını açıkça belirtmelerine yardımcı olur. executable=False olduğunda (yani cfg isteğe bağlıdır), bunu yalnızca okunabilirliğe gerçekten yardımcı olduğunda ayarlayın.

Ayrıca, şunu kullanmak için cfg=my_transition kullanabilirsiniz: geçişlere izin veren kullanıcı tanımlı geçişleri yapılandırma değiştirme konusunda çok daha fazla esneklikle dezavantajı yapı grafiğini daha geniş ve daha az anlaşılır hale getirir.

Not: Geçmişte Bazel'in yürütme platformu kavramı yoktu. Bunun yerine tüm derleme işlemlerinin ana makinede çalıştırıldığı kabul ediliyordu. 6.0'dan önceki Bazel sürümleri bunu temsil etmek için farklı bir "ana makine" yapılandırması oluşturuyordu. "Ana makine" ifadeleri görüyorsanız eski belgeler de böyledir. bahsetmek istiyorum. Kavramsal olan bu ekstradan kaçınmak için Bazel 6.0 veya daha yeni bir sürüm kullanmanızı öneririz. yardımcı olabilir.

Yapılandırma parçaları

Kurallar cpp, java ve jvm gibi yapılandırma parçalarına erişebilir. Ancak erişim hatalarını önlemek için gerekli tüm parçalar bildirilmelidir:

def _impl(ctx):
    # Using ctx.fragments.cpp leads to an error since it was not declared.
    x = ctx.fragments.java
    ...

my_rule = rule(
    implementation = _impl,
    fragments = ["java"],      # Required fragments of the target configuration
    host_fragments = ["java"], # Required fragments of the host configuration
    ...
)

Normalde, bir dosyanın runfiles ağacındaki göreli yolu, söz konusu dosyanın kaynak ağaç veya oluşturulan çıkış ağacındaki göreli yolu ile aynıdır. Bu değerlerin bir nedenle farklı olması gerekiyorsa root_symlinks veya symlinks bağımsız değişkenlerini belirtebilirsiniz. root_symlinks, yolları dosyalarla eşleyen bir sözlüktür. Bu yolların referans noktası, runfiles dizininin köküdür. İlgili içeriği oluşturmak için kullanılan symlinks sözlüğü aynı ancak yolların başında dolaylı olarak depolandığı yerin adını değil, depolandığı yerin adını hedef) ekleyebilirsiniz.

    ...
    runfiles = ctx.runfiles(
        root_symlinks = {"some/path/here.foo": ctx.file.some_data_file2}
        symlinks = {"some/path/here.bar": ctx.file.some_data_file3}
    )
    # Creates something like:
    # sometarget.runfiles/
    #     some/
    #         path/
    #             here.foo -> some_data_file2
    #     <workspace_name>/
    #         some/
    #             path/
    #                 here.bar -> some_data_file3

symlinks veya root_symlinks kullanılıyorsa iki farklı eşleme yapmamaya dikkat edin dosyalarını çalıştırma ağacında aynı yola yönlendirir. Bu, derlemenin çakışmayı açıklayan bir hatayla başarısız olmasına neden olur. Bu sorunu düzeltmek için Çakışmayı kaldırmak için ctx.runfiles bağımsız değişken. Bu kontrol, kurallarınızı kullanan tüm hedeflerin yanı sıra bu kurallara bağlı olan her türlü hedef belirler. Bu durum, özellikle aracınızın geçişli olarak kullanılması ihtimali varsa risklidir. başka bir araçla; sembolik bağlantı adları bir aracın çalışma dosyalarında benzersiz olmalıdır ve tüm bağımlılıklarını fark edebilirsiniz.

Kod kapsamı

coverage komutu çalıştırıldığında, derlemenin belirli hedefler için kapsam araçları eklemesi gerekebilir. İlgili içeriği oluşturmak için kullanılan derleme, gerekli araçları içeren kaynak dosyaların listesini de toplar. Alt kümesi bayrakla kontrol edilen, ancak bayrakla kontrol edilen --instrumentation_filter. Test hedefleri hariç tutulmadığı sürece --instrument_test_targets belirtilir.

Bir kural uygulaması, derleme sırasında kapsam araçları eklerse bunu uygulama işlevinde hesaba katmalıdır. ctx.coverage_instrumented, "true" değerini döndürür. kapsam modunu uygular:

# Are this rule's sources instrumented?
if ctx.coverage_instrumented():
  # Do something to turn on coverage for this compile action

Kapsam modunda her zaman açık olması gereken mantık (hedefin kaynaklarının gerekli olup olmadığına) bağlı olarak, ctx.configuration.coverage_enabled.

Kural, derlemeden önce doğrudan bağımlılıklarından kaynak içeriyorsa (ör. başlık dosyaları) bağımlılıkların kaynaklarının da enstrümante edilmesi gerekiyorsa derleme zamanı enstrümantasyonunu da etkinleştirmesi gerekebilir:

# Are this rule's sources or any of the sources for its direct dependencies
# in deps instrumented?
if (ctx.configuration.coverage_enabled and
    (ctx.coverage_instrumented() or
     any([ctx.coverage_instrumented(dep) for dep in ctx.attr.deps]))):
    # Do something to turn on coverage for this compile action

Kurallar, aynı zamanda hangi özelliklerin InstrumentedFilesInfo sağlayıcısıyla oluşturulan kapsam, coverage_common.instrumented_files_info instrumented_files_info öğesinin dependency_attributes parametresi, deps gibi kod bağımlılıkları ve data gibi veri bağımlılıkları da dahil olmak üzere tüm çalışma zamanı bağımlılık özelliklerini listelemelidir. source_attributes parametresi, kuralın kaynak dosya özellikleri:

def _example_library_impl(ctx):
    ...
    return [
        ...
        coverage_common.instrumented_files_info(
            ctx,
            dependency_attributes = ["deps", "data"],
            # Omitted if coverage is not supported for this rule:
            source_attributes = ["srcs", "hdrs"],
        )
        ...
    ]

InstrumentedFilesInfo döndürülmezse dependency_attributes içinde, cfg özelliği "host" veya "exec" olarak ayarlanmayan her araç dışı bağımlılık özelliği ile varsayılan bir özellik oluşturulur. (srcs gibi özellikleri source_attributes yerine dependency_attributes içine yerleştirdiği için bu ideal bir davranış değildir ancak bağımlılık zincirindeki tüm kurallar için açık kapsam yapılandırması gerekmesini önler.)

Doğrulama İşlemleri

Bazen derleme hakkında bir şeyler doğrulamanız gerekir bu doğrulamayı yapmak için gereken bilgiler yalnızca yapılarda mevcuttur (kaynak dosyalar veya oluşturulan dosyalar). Bu bilgiler yapılarda bulunduğundan kurallar dosyaları okuyamadığı için analiz sırasında bu doğrulamayı yapamaz. Bunun yerine, işlemlerin bu doğrulamayı yürütme sırasında yapması gerekir. Zaman işlem başarısız olursa işlem ve dolayısıyla derleme de başarısız olur.

Çalıştırılabilecek doğrulamalara örnek olarak statik analiz, hata analizi, bağımlılık ve tutarlılık kontrolleri ile stil kontrolleri.

Doğrulama işlemleri, parçaları hareket ettirerek derleme performansının iyileştirilmesine de yardımcı olabilir birçok işlem bulunur. Örneğin, derleme ve linting yapan tek bir işlem, derleme işlemi ve linting işlemi olarak ayrılabilirse linting işlemi, doğrulama işlemi olarak ve diğer işlemlerle paralel olarak çalıştırılabilir.

Bu "doğrulama işlemleri" genellikle başka bir yerde kullanılan hiçbir şey üretmez. çünkü yalnızca girdileriyle ilgili birtakım iddialarda bulunmaları gerekiyor. Bu bir soruna işaret eder: Doğrulama işlemi gerçekten bir kural, derlemenin başka bir yerinde kullanılırsa işlemin çalıştırılmasını nasıl sağlar? Geçmişte, doğrulama işleminin boş bir dosya oluşturması ve bu çıktıyı derlemedeki diğer önemli işlemlerin girişlerine yapay olarak eklemesi yaklaşımı benimseniyordu:

Bu yöntem işe yarar çünkü Bazel, derleme işlemi sırasında her zaman doğrulama işlemini ancak bunun önemli dezavantajları vardır:

  1. Doğrulama işlemi, derlemenin kritik yolundadır. Bazel, derleme işlemini çalıştırmak için boş çıktının gerekli olduğunu düşündüğü için derleme işlemi girişi yoksayacak olsa bile önce doğrulama işlemini çalıştırır. Bu, paralelliği azaltır ve derlemeleri yavaşlatır.

  2. Derleme işlemi yerine derlemedeki diğer işlemler çalışabilirse doğrulama işlemlerinin boş çıkışlarının bu işlemlere de eklenmesi gerekir (örneğin, java_library'nin kaynak jar çıkışı). Bu derleme işlemi yerine çalıştırılabilecek yeni eylemlerin sonradan eklenir ve boş doğrulama çıkışı yanlışlıkla bırakılır.

Bu sorunların çözümü Doğrulamalar Çıktı Grubu'nu kullanmaktır.

Doğrulamalar Çıkış Grubu

Doğrulamalar Çıkış Grubu, diğer doğrulama işlemlerinin kullanılmayan çıktılarını oluşturur; böylece bunların yapay olarak girişlerine eklenir.

Bu grup, --output_groups işaretinin değerinden ve hedefin nasıl bağımlı olduğundan (örneğin, komut satırında, bağımlılık olarak veya hedefin gizli çıkışları aracılığıyla) bağımsız olarak çıkışlarının her zaman istenmesi açısından özeldir. Normal önbelleğe alma ve artımlılığın hâlâ geçerlidir: doğrulama işlemine yapılan girişler değişmediyse ve doğrulama işlemi başarıyla tamamlandıysa doğrulama işlemi gerekir.

Bu çıkış grubunun kullanılması için doğrulama işlemlerinin bir dosya çıkarması gerekir. boş bir alan olabilir. Bu, normal koşullarda çalışmayan bazı araçların çıkışlar oluşturacaksınız.

Bir hedefin doğrulama işlemleri üç durumda çalıştırılmaz:

  • Hedefe bir araç olarak ihtiyaç duyulduğunda
  • Hedefe dolaylı bir bağımlılık olarak dayanıldığında (örneğin, "_" ile başlayan özellik)
  • Hedef, ana makine veya yürütme yapılandırmasında oluşturulduğunda.

Bu hedeflerin kendine ait olduğu varsayılır. doğrulama hatalarını ortaya çıkaracak ayrı derlemeler ve testler oluşturun.

Doğrulamalar Çıkış Grubunu Kullanma

Doğrulamalar Çıktı Grubu _validation olarak adlandırılır ve diğer herhangi bir grup gibi kullanılır. çıkış grubu:

def _rule_with_validation_impl(ctx):

  ctx.actions.write(ctx.outputs.main, "main output\n")

  ctx.actions.write(ctx.outputs.implicit, "implicit output\n")

  validation_output = ctx.actions.declare_file(ctx.attr.name + ".validation")
  ctx.actions.run(
      outputs = [validation_output],
      executable = ctx.executable._validation_tool,
      arguments = [validation_output.path])

  return [
    DefaultInfo(files = depset([ctx.outputs.main])),
    OutputGroupInfo(_validation = depset([validation_output])),
  ]


rule_with_validation = rule(
  implementation = _rule_with_validation_impl,
  outputs = {
    "main": "%{name}.main",
    "implicit": "%{name}.implicit",
  },
  attrs = {
    "_validation_tool": attr.label(
        default = Label("//validation_actions:validation_tool"),
        executable = True,
        cfg = "exec"),
  }
)

Doğrulama çıkış dosyasının DefaultInfo veya girdiler. Bu tür bir kuralın hedefi için doğrulama işlemi, hedef etikete bağlıysa veya hedefin herhangi bir gizli çıkışına doğrudan ya da dolaylı olarak bağlıysa yine de çalışır.

Genellikle doğrulama işlemlerinin sonuçlarının yalnızca emin olun ve diğer işlemlerin girişlerine eklenmez. paralellik kazançlarını ortadan kaldırabilir. Ancak, Bazel'in şu anda bu özelliği uygulanacak özel denetimler vardır. Bu nedenle, doğrulama işlemi çıkışlarının Starlark kurallarıyla ilgili testlerdeki işlemlerin girişlerine eklenmediğini test etmeniz gerekir. Örneğin:

load("@bazel_skylib//lib:unittest.bzl", "analysistest")

def _validation_outputs_test_impl(ctx):
  env = analysistest.begin(ctx)

  actions = analysistest.target_actions(env)
  target = analysistest.target_under_test(env)
  validation_outputs = target.output_groups._validation.to_list()
  for action in actions:
    for validation_output in validation_outputs:
      if validation_output in action.inputs.to_list():
        analysistest.fail(env,
            "%s is a validation action output, but is an input to action %s" % (
                validation_output, action))

  return analysistest.end(env)

validation_outputs_test = analysistest.make(_validation_outputs_test_impl)

Doğrulama İşlemleri İşareti

Doğrulama işlemlerinin çalıştırılması --run_validations komut satırı tarafından kontrol edilir işaretidir. Bu değer varsayılan olarak "true" (doğru) değerine ayarlanır.

Kullanımdan kaldırılan özellikler

Kullanımdan kaldırılan önceden tanımlanmış çıkışlar

Önceden tanımlanmış çıkışları kullanmanın iki desteği sonlandırılmış yolu vardır:

  • rule öğesinin outputs parametresi, Veri oluşturmak için çıkış özelliği adları ile dize şablonları arasında önceden beyan edilmiş çıkış etiketlerinden oluşur. Önceden bildirilmemiş çıkışları ve çıkışları açıkça DefaultInfo.files projesine ekliyor. Kural hedefinin önceden beyan edilmiş yerine çıkışı tüketen kurallar için giriş olarak etiketle çıkışının etiketine daha yakın olabilir.

  • Yürütülebilir kurallar için ctx.outputs.executable, kural hedefiyle aynı ada sahip önceden tanımlanmış bir yürütülebilir çıkışa başvurur. Sonucu açıkça belirtmeyi tercih edin, örneğin ctx.actions.declare_file(ctx.label.name) ve komutun , yürütülebilir dosyayı yürütülmesine izin verecek şekilde ayarlar. Açıkça yürütülebilir çıktıyı DefaultInfo executable parametresine iletin.

Kaçınılması gereken Runfiles özellikleri

ctx.runfiles ve runfiles türü, çoğu eski nedenlerle korunan karmaşık bir özellik grubuna sahiptir. Aşağıdaki öneriler karmaşıklığı azaltmaya yardımcı olur:

  • ctx.runfiles'in collect_data ve collect_default modlarını kullanmaktan kaçının. Bu modlar, belirli kodlanmış bağımlılık kenarlarında çalışma dosyalarını dolaylı olarak kafa karıştırıcı şekillerde toplar. Bunun yerine, dosyayı şu öğenin files veya transitive_files parametrelerini kullanarak ekleyin: ctx.runfiles kullanarak veya bağımlılıklardan gelen çalıştırma dosyalarını runfiles = runfiles.merge(dep[DefaultInfo].default_runfiles).

  • DefaultInfo kurucusunun data_runfiles ve default_runfiles özelliklerini kullanmaktan kaçının. Bunun yerine DefaultInfo(runfiles = ...) değerini belirtin. "Varsayılan" ve "veri" çalışma dosyaları arasındaki ayrım, eski nedenlerden dolayı korunur. Örneğin, bazı kurallar varsayılan çıkışlarını data_runfiles'e, ancak default_runfiles'e koymaz. Bunun yerine data_runfiles, kurallar her ikisi de varsayılan çıkışları içermeli ve Çalıştırma dosyaları sağlayan özelliklerden default_runfiles (genellikle data).

  • runfilesDefaultInfo'dan alırken (genellikle yalnızca mevcut kural ile bağımlılıkları arasındaki çalıştırma dosyalarını birleştirmek için) DefaultInfo.data_runfiles'i değil DefaultInfo.default_runfiles kullanın.

Eski sağlayıcılardan taşıma

Bazel sağlayıcılar geçmişte Target nesnesinde basit alanlardı. Onlar noktaları, nokta operatörü kullanılarak erişilmiş ve işlevi tarafından döndürülen bir struct'a dönüştürülür.

Bu stil kullanımdan kaldırıldı ve yeni kodda kullanılmamalıdır; için aşağıdaki bilgilere bakın bazı ek bilgilere ulaşabilirsiniz. Yeni sağlayıcı mekanizması, ad çakışmalarını önler. Ayrıca, sağlayıcı örneğine erişen tüm kodların sağlayıcı simgesini kullanarak bu örneği almasını zorunlu kılarak veri gizleme özelliğini de destekler.

Şu an için, eski sağlayıcılar desteklenmektedir. Bir kural, aşağıdaki gibi eski ve modern sağlayıcılar:

def _old_rule_impl(ctx):
  ...
  legacy_data = struct(x="foo", ...)
  modern_data = MyInfo(y="bar", ...)
  # When any legacy providers are returned, the top-level returned value is a
  # struct.
  return struct(
      # One key = value entry for each legacy provider.
      legacy_info = legacy_data,
      ...
      # Additional modern providers:
      providers = [modern_data, ...])

dep, bu kuralın bir örneği için sonuçta elde edilen Target nesnesiyse sağlayıcılar ve içerikleri dep.legacy_info.x ve dep[MyInfo].y.

Döndürülen yapı, providers'e ek olarak özel anlamı olan başka alanlar da alabilir (ve bu nedenle ilgili eski sağlayıcıyı oluşturmaz):

  • files, runfiles, data_runfiles, default_runfiles ve executable, aynı adlandırılmış alanlara karşılık gelir DefaultInfo. DefaultInfo sağlayıcısı döndürürken bu alanlardan herhangi birinin belirtilmesine izin verilmez.

  • output_groups alanı bir yapı değeri alır ve bir OutputGroupInfo değerine karşılık gelir.

Kuralların provides bildirimlerinde ve bağımlılık özelliklerinin providers bildirimlerinde eski sağlayıcılar dize olarak, modern sağlayıcılar ise *Info sembolleriyle iletilir. Taşıma işlemi sırasında dizelerden sembollere geçtiğinizden emin olun. Güncellemenin zor olduğu karmaşık veya büyük kural kümeleri için atomik bir yapıya sahip olduğunu fark ederseniz, bu diziyi takip etmeniz durumunda için şu adımları izleyin:

  1. Eski sağlayıcıyı oluşturan kuralları, hem eski sağlayıcıyı hem de eski sağlayıcıyı oluşturacak şekilde değiştirin ve modern sağlayıcılar için geçerlidir. Eski sağlayıcıyı döndürdüğünü belirten kurallarda, bu beyanı hem eski hem de modern sağlayıcıları içerecek şekilde güncelleyin.

  2. Eski sağlayıcıyı kullanan kuralları, modern sağlayıcıyı kullanacak şekilde değiştirin. Herhangi bir özellik beyanı eski sağlayıcıyı gerektiriyorsa bunları modern sağlayıcıyı gerektirecek şekilde de güncelleyin. İsteğe bağlı olarak: bu çalışmayı, tüketicilerin aşağıdakilerden birini kabul etmesini/zorunlu kılmasını sağlayarak 1. adıma provider: Alan adını kullanarak eski sağlayıcının varlığını test etme hasattr(target, 'foo') veya FooInfo in target kullanan yeni sağlayıcı

  3. Eski sağlayıcıyı tüm kurallardan tamamen kaldırın.