Aturan menentukan serangkaian tindakan yang dilakukan Bazel input untuk menghasilkan satu set {i>output<i}, yang direferensikan pada penyedia yang ditampilkan oleh fungsi implementasi. Misalnya, sebuah C++ aturan biner mungkin:
- Ambil sekumpulan file sumber
.cpp
(input). - Jalankan
g++
di file sumber (tindakan). - Tampilkan penyedia
DefaultInfo
dengan output yang dapat dieksekusi dan file lainnya untuk disediakan saat runtime. - Tampilkan penyedia
CcInfo
dengan informasi khusus C++ yang dikumpulkan dari target dan dependensinya.
Dari perspektif Bazel, g++
dan library C++ standar juga merupakan input
untuk aturan ini. Sebagai penulis aturan, Anda tidak hanya harus mempertimbangkan input yang disediakan pengguna ke aturan, tetapi juga semua alat dan library yang diperlukan untuk menjalankan tindakan.
Sebelum membuat atau mengubah aturan apa pun, pastikan Anda memahami fase build Bazel. Penting untuk memahami tiga fase build (pemuatan, analisis, dan eksekusi). Juga berguna untuk pelajari makro untuk memahami perbedaan antara aturan dan makro. Untuk memulai, tinjau Tutorial Aturan terlebih dahulu. Kemudian, gunakan halaman ini sebagai referensi.
Beberapa aturan dibuat di Bazel sendiri. Aturan native ini, seperti
cc_library
dan java_binary
, menyediakan beberapa dukungan inti untuk bahasa tertentu.
Dengan menentukan aturan sendiri, Anda dapat menambahkan dukungan serupa untuk bahasa dan alat
yang tidak didukung Bazel secara native.
Bazel menyediakan model ekstensi untuk menulis aturan menggunakan
bahasa Starlark. Aturan ini ditulis dalam file .bzl
, yang
dapat dimuat langsung dari file BUILD
.
Saat menentukan aturan sendiri, Anda dapat memutuskan atribut yang didukung dan cara aturan tersebut menghasilkan output.
Fungsi implementation
aturan menentukan perilaku persisnya selama
fase analisis. Fungsi ini tidak menjalankan
menggunakan perintah eksternal. Sebaliknya, ini mendaftarkan tindakan yang akan digunakan
nanti selama fase eksekusi untuk membuat output aturan, jika output tersebut
diperlukan.
Pembuatan aturan
Di dalam file .bzl
, gunakan fungsi rule untuk menentukan
aturan, dan menyimpan hasilnya dalam variabel global. Panggilan ke rule
menentukan
atribut dan atribut
fungsi penerapan:
example_library = rule(
implementation = _example_library_impl,
attrs = {
"deps": attr.label_list(),
...
},
)
Ini menentukan jenis aturan bernama example_library
.
Panggilan ke rule
juga harus menentukan apakah aturan membuat
output dapat dieksekusi (dengan executable=True
), atau secara khusus
dapat dieksekusi pengujian (dengan test=True
). Jika yang terakhir, aturan tersebut adalah aturan pengujian,
dan nama aturan harus diakhiri dengan _test
.
Pembuatan instance target
Aturan dapat dimuat dan dipanggil dalam file BUILD
:
load('//some/pkg:rules.bzl', 'example_library')
example_library(
name = "example_target",
deps = [":another_target"],
...
)
Setiap panggilan ke aturan build tidak menampilkan nilai, tetapi memiliki efek samping dari penetapan target. Langkah ini disebut membuat instance aturan. Ini menetapkan nama untuk target baru dan nilai untuk atribut target.
Aturan juga dapat dipanggil dari fungsi Starlark dan dimuat dalam file .bzl
.
Fungsi Starlark yang memanggil aturan disebut makro Starlark.
Makro Starlark pada akhirnya harus dipanggil dari file BUILD
, dan hanya dapat
dipanggil selama fase pemuatan, saat BUILD
file dievaluasi untuk membuat instance target.
Atribut
Atribut adalah argumen aturan. Atribut dapat memberikan nilai tertentu ke penerapan target, atau mereka dapat merujuk ke target, sehingga membuat grafik dependensi.
Atribut khusus aturan, seperti srcs
atau deps
, ditentukan dengan meneruskan peta
dari nama atribut ke skema (dibuat menggunakan modul attr
) ke parameter attrs
dari rule
.
Atribut umum, seperti
name
dan visibility
, secara implisit ditambahkan ke semua aturan. Atribut tambahan
ditambahkan secara implisit ke
aturan yang dapat dieksekusi dan pengujian secara khusus. Atribut yang
secara implisit ditambahkan ke aturan tidak bisa dimasukkan dalam kamus yang diteruskan ke
attrs
.
Atribut dependensi
Aturan yang memproses kode sumber biasanya menentukan atribut berikut untuk menangani berbagai jenis dependensi:
srcs
menentukan file sumber yang diproses oleh tindakan target. Sering kali, skema atribut menentukan ekstensi file yang diharapkan untuk jenis file sumber yang diproses aturan. Aturan untuk bahasa dengan file header umumnya menentukan atributhdrs
terpisah untuk header yang diproses oleh target dan konsumennya.deps
menentukan dependensi kode untuk target. Skema atribut harus menentukan penyedia yang harus menyediakan dependensi tersebut. (Misalnya,cc_library
menyediakanCcInfo
.)data
menentukan file yang akan disediakan saat runtime untuk semua file yang dapat dieksekusi yang bergantung pada target. Tindakan ini akan memungkinkan file arbitrer ditentukan.
example_library = rule(
implementation = _example_library_impl,
attrs = {
"srcs": attr.label_list(allow_files = [".example"]),
"hdrs": attr.label_list(allow_files = [".header"]),
"deps": attr.label_list(providers = [ExampleInfo]),
"data": attr.label_list(allow_files = True),
...
},
)
Ini adalah contoh atribut dependensi. Atribut yang menentukan
label input (yang didefinisikan dengan
attr.label_list
,
attr.label
, atau
attr.label_keyed_string_dict
)
menentukan dependensi jenis tertentu
antara target dan target yang labelnya (atau label yang sesuai
Label
objek) tercantum dalam atribut tersebut saat target
didefinisikan. Repositori, dan mungkin jalur, untuk label ini telah diselesaikan
relatif terhadap target yang ditentukan.
example_library(
name = "my_target",
deps = [":other_target"],
)
example_library(
name = "other_target",
...
)
Dalam contoh ini, other_target
adalah dependensi my_target
, sehingga
other_target
dianalisis terlebih dahulu. Akan terjadi kesalahan jika
ada siklus di dalam
grafik dependensi target.
Atribut pribadi dan dependensi implisit
Atribut dependensi dengan nilai default membuat dependensi implisit. Ini
implisit karena merupakan bagian dari grafik target yang tidak
ditentukan pengguna dalam file BUILD
. Dependensi implisit berguna untuk melakukan hard code pada
hubungan antara aturan dan alat (dependensi waktu build, seperti
compiler), karena sebagian besar waktu pengguna tidak tertarik untuk menentukan
alat yang digunakan aturan. Di dalam fungsi penerapan aturan, nilai ini diperlakukan
sama dengan dependensi lainnya.
Jika Anda ingin menyediakan dependensi implisit tanpa mengizinkan pengguna untuk
mengganti nilai tersebut, Anda dapat membuat atribut menjadi pribadi dengan memberinya nama
yang dimulai dengan garis bawah (_
). Atribut pribadi harus memiliki nilai default
masing-masing. Secara umum, penggunaan atribut pribadi hanya masuk akal untuk dependensi
implisit.
example_library = rule(
implementation = _example_library_impl,
attrs = {
...
"_compiler": attr.label(
default = Label("//tools:example_compiler"),
allow_single_file = True,
executable = True,
cfg = "exec",
),
},
)
Dalam contoh ini, setiap target jenis example_library
memiliki
dependensi pada compiler //tools:example_compiler
. Hal ini memungkinkan
fungsi implementasi example_library
untuk menghasilkan tindakan yang memanggil
compiler, meskipun pengguna tidak meneruskan labelnya sebagai input. Sejak
_compiler
adalah atribut pribadi, yang berarti ctx.attr._compiler
akan selalu menunjuk ke //tools:example_compiler
di semua target aturan ini
. Atau, Anda dapat memberi nama atribut compiler
tanpa garis bawah dan mempertahankan nilai default. Hal ini memungkinkan pengguna untuk mengganti
kompilator berbeda jika perlu, tetapi tidak
membutuhkan pemahaman terhadap
label.
Dependensi implisit umumnya digunakan untuk alat yang berada di repositori yang sama dengan implementasi aturan. Jika alat berasal dari platform eksekusi atau repositori lain, aturan harus mendapatkan alat tersebut dari toolchain.
Atribut output
Atribut output, seperti attr.output
dan
attr.output_list
, deklarasikan file output yang
target dimunculkan. Atribut ini berbeda dari atribut dependensi dalam dua cara:
- Parameter ini menentukan target file output, bukan merujuk ke target yang ditentukan di tempat lain.
- Target file output bergantung pada target aturan yang dibuat instance-nya, bukan sebaliknya.
Biasanya, atribut output hanya digunakan saat aturan perlu membuat output
dengan nama yang ditentukan pengguna yang tidak dapat didasarkan pada nama target. Jika aturan memiliki
satu atribut output, biasanya bernama out
atau outs
.
Atribut output adalah cara yang lebih disukai untuk membuat output yang telah dideklarasikan sebelumnya, yang dapat secara khusus bergantung atau diminta di command line.
Fungsi penerapan
Setiap aturan memerlukan fungsi implementation
. Fungsi ini dijalankan
secara ketat dalam fase analisis dan mengubah
grafik target yang dihasilkan dalam fase pemuatan menjadi grafik
tindakan yang akan dilakukan selama fase eksekusi. Dengan demikian,
implementasi tidak bisa benar-benar
membaca atau menulis file.
Fungsi penerapan aturan biasanya bersifat pribadi (dinamai dengan awalan
garis bawah). Secara konvensional, {i>string<i} diberi nama yang sama dengan aturannya, tetapi diberi akhiran
dengan _impl
.
Fungsi implementasi menggunakan tepat satu parameter:
konteks aturan, yang secara konvensional diberi nama ctx
. Fungsi ini menampilkan daftar
penyedia.
Target
Dependensi direpresentasikan pada waktu analisis sebagai Target
objek terstruktur dalam jumlah besar. Objek ini berisi penyedia yang dihasilkan saat
fungsi implementasi target dijalankan.
ctx.attr
memiliki kolom yang sesuai dengan nama setiap
atribut dependensi, yang berisi objek Target
yang mewakili setiap dependensi
langsung melalui atribut tersebut. Untuk atribut label_list
, ini adalah daftar
Targets
. Untuk atribut label
, ini adalah satu Target
atau None
.
Daftar objek penyedia ditampilkan oleh fungsi implementasi target:
return [ExampleInfo(headers = depset(...))]
Hal tersebut dapat diakses menggunakan notasi indeks ([]
), dengan jenis penyedia sebagai
kunci. Ini bisa berupa penyedia kustom yang ditentukan di Starlark atau
penyedia untuk aturan native tersedia sebagai Starlark
variabel global.
Misalnya, jika aturan mengambil file header melalui atribut hdrs
dan menyediakannya
ke tindakan kompilasi target dan konsumennya, aturan tersebut dapat
mengumpulkannya seperti ini:
def _example_library_impl(ctx):
...
transitive_headers = [hdr[ExampleInfo].headers for hdr in ctx.attr.hdrs]
Untuk gaya lama yang mana struct
ditampilkan dari
fungsi implementasi target, bukan daftar objek penyedia:
return struct(example_info = struct(headers = depset(...)))
Penyedia dapat diambil dari kolom yang sesuai dari objek Target
:
transitive_headers = [hdr.example_info.headers for hdr in ctx.attr.hdrs]
Gaya ini sangat tidak disarankan dan aturannya harus bermigrasi dari lokasi tersebut.
File
File direpresentasikan oleh objek File
. Karena Bazel tidak
melakukan I/O file selama fase analisis, objek ini tidak dapat digunakan untuk
secara langsung membaca atau
menulis isi file. Sebaliknya, akan diteruskan ke tindakan-emitting
fungsi (lihat ctx.actions
) untuk membuat bagian-bagian dari
grafik tindakan.
File
dapat berupa file sumber atau file yang dihasilkan. Setiap file yang dibuat
harus merupakan output dari satu tindakan saja. File sumber tidak bisa berupa {i>output<i} dari
tindakan apa pun.
Untuk setiap atribut dependensi, isian
yang sesuai dari
ctx.files
berisi daftar output default dari semua
dependensi melalui atribut tersebut:
def _example_library_impl(ctx):
...
headers = depset(ctx.files.hdrs, transitive=transitive_headers)
srcs = ctx.files.srcs
...
ctx.file
berisi satu File
atau None
untuk
atribut dependensi yang spesifikasinya ditetapkan allow_single_file=True
.
ctx.executable
berperilaku sama seperti ctx.file
, tetapi hanya
berisi kolom untuk atribut dependensi yang spesifikasinya menetapkan executable=True
.
Mendeklarasikan output
Selama fase analisis, fungsi penerapan aturan dapat membuat output.
Karena semua label harus diketahui
selama fase pemuatan, label tambahan ini
output tidak memiliki label. Objek File
untuk output dapat dibuat menggunakan
ctx.actions.declare_file
dan
ctx.actions.declare_directory
. Sering kali,
nama output didasarkan pada nama target,
ctx.label.name
:
def _example_library_impl(ctx):
...
output_file = ctx.actions.declare_file(ctx.label.name + ".output")
...
Untuk output yang telah dideklarasikan sebelumnya, seperti yang dibuat untuk
atribut output, objek File
dapat diambil
dari kolom yang sesuai dari ctx.outputs
.
Tindakan
Tindakan menjelaskan cara membuat kumpulan output dari kumpulan input, misalnya "jalankan gcc di hello.c dan dapatkan hello.o". Saat tindakan dibuat, Bazel tidak menjalankan perintah dengan seketika. Ia mendaftarkannya dalam grafik dependensi, karena suatu tindakan dapat bergantung pada {i>output<i} dari tindakan lain. Misalnya, dalam C, linker harus dipanggil setelah compiler.
Fungsi tujuan umum yang membuat tindakan didefinisikan di
ctx.actions
:
ctx.actions.run
, untuk menjalankan file yang dapat dieksekusi.ctx.actions.run_shell
, untuk menjalankan shell perintah.ctx.actions.write
, untuk menulis string ke file.ctx.actions.expand_template
, ke membuat file dari template.
ctx.actions.args
dapat digunakan untuk mengumpulkan argumen tindakan secara
efisien. Menghindari depset yang diratakan hingga
waktu eksekusi:
def _example_library_impl(ctx):
...
transitive_headers = [dep[ExampleInfo].headers for dep in ctx.attr.deps]
headers = depset(ctx.files.hdrs, transitive=transitive_headers)
srcs = ctx.files.srcs
inputs = depset(srcs, transitive=[headers])
output_file = ctx.actions.declare_file(ctx.label.name + ".output")
args = ctx.actions.args()
args.add_joined("-h", headers, join_with=",")
args.add_joined("-s", srcs, join_with=",")
args.add("-o", output_file)
ctx.actions.run(
mnemonic = "ExampleCompile",
executable = ctx.executable._compiler,
arguments = [args],
inputs = inputs,
outputs = [output_file],
)
...
Tindakan mengambil daftar atau depset file input dan membuat daftar file output (tidak kosong). Kumpulan file input dan output harus diketahui selama fase analisis. Hal itu mungkin tergantung pada nilai , termasuk penyedia dari dependensi, tetapi tidak dapat bergantung pada hasil eksekusi. Misalnya, jika tindakan Anda menjalankan perintah {i>unzip<i}, Anda harus menentukan file mana yang ingin di-inflate (sebelum menjalankan ekstrak). Tindakan yang membuat jumlah file yang bervariasi secara internal dapat menggabungkannya dalam satu file (seperti zip, tar, atau format arsip lainnya).
Tindakan harus mencantumkan semua inputnya. Mencantumkan input yang tidak digunakan diizinkan, tetapi tidak efisien.
Tindakan harus membuat semua outputnya. Mereka dapat menulis file lain, tapi segala sesuatu yang tidak ada dalam {i>output<i} tidak akan tersedia bagi konsumen. Semua output yang dinyatakan harus ditulis oleh tindakan tertentu.
Tindakan sebanding dengan fungsi murni: Tindakan tersebut seharusnya hanya bergantung pada input yang diberikan, dan menghindari mengakses informasi komputer, nama pengguna, jam, jaringan, atau perangkat I/O (kecuali untuk input pembacaan dan output penulisan). Ini adalah penting karena {i>output<i} akan di-cache dan digunakan kembali.
Dependensi diselesaikan oleh Bazel, yang akan menentukan tindakan mana yang dijalankan. Ini adalah error jika ada siklus dalam grafik dependensi. Membuat suatu tindakan tidak menjamin bahwa tindakan itu akan dijalankan, itu tergantung pada apakah output-nya diperlukan untuk build.
Penyedia
Penyedia adalah informasi yang diekspos oleh aturan ke aturan lain yang yang bergantung pada {i>database.<i} Data ini dapat mencakup file output, library, parameter yang akan diteruskan pada baris perintah alat, atau apa pun yang harus diketahui oleh konsumen target lebih lanjut.
Karena fungsi implementasi aturan hanya bisa membaca penyedia dari
dependensi langsung target yang dibuat instance, aturan perlu meneruskan
informasi dari dependensi target yang perlu diketahui oleh
konsumen, umumnya dengan mengakumulasinya ke dalam depset
.
Penyedia target ditentukan oleh daftar objek Provider
yang ditampilkan oleh
fungsi implementasi.
Fungsi implementasi lama juga dapat ditulis dalam gaya lama di mana
fungsi implementasi menampilkan struct
, bukan daftar
objek penyedia. Gaya ini sangat tidak dianjurkan dan aturan harus
dimigrasikan darinya.
Output default
Output default target adalah output yang diminta secara default saat
target diminta untuk dibuat
di baris perintah. Misalnya,
java_library
target //pkg:foo
memiliki foo.jar
sebagai output default, sehingga
akan dibuat oleh perintah bazel build //pkg:foo
.
Output default ditentukan oleh parameter files
DefaultInfo
:
def _example_library_impl(ctx):
...
return [
DefaultInfo(files = depset([output_file]), ...),
...
]
Jika DefaultInfo
tidak ditampilkan oleh penerapan aturan atau parameter files
tidak ditentukan, DefaultInfo.files
akan ditetapkan secara default ke semua output yang telah dideklarasikan sebelumnya (umumnya, yang dibuat oleh atribut output).
Aturan yang melakukan tindakan harus memberikan output default, meskipun output tersebut tidak diharapkan untuk digunakan secara langsung. Tindakan yang tidak ada dalam grafik output yang diminta akan dipangkas. Jika {i>output<i} hanya digunakan oleh konsumen target, tindakan tersebut tidak akan dilakukan ketika target dibuat secara terpisah. Ini membuat proses debug menjadi lebih sulit karena membangun ulang hanya target yang gagal tidak akan melakukan reka ulang kegagalan.
Runfiles
Runfile adalah sekumpulan file yang digunakan oleh target saat runtime (bukan saat build). Selama fase eksekusi, Bazel membuat hierarki direktori yang berisi symlink yang mengarah ke runfile. Tindakan ini akan melakukan staging lingkungan untuk biner sehingga dapat mengakses runfile selama runtime.
Runfile dapat ditambahkan secara manual selama pembuatan aturan.
Objek runfiles
dapat dibuat dengan metode runfiles
di konteks aturan, ctx.runfiles
dan diteruskan ke
runfiles
pada DefaultInfo
. Output yang dapat dieksekusi dari
aturan yang dapat dieksekusi secara implisit ditambahkan ke runfile.
Beberapa aturan menetapkan atribut, yang diberi nama secara umum
data
, yang outputnya ditambahkan
target runfiles. Runfile juga harus digabungkan dari data
, serta
dari atribut apa pun yang mungkin memberikan kode untuk eksekusi akhir, umumnya
srcs
(yang mungkin berisi target filegroup
dengan data
terkait) dan
deps
.
def _example_library_impl(ctx):
...
runfiles = ctx.runfiles(files = ctx.files.data)
transitive_runfiles = []
for runfiles_attr in (
ctx.attr.srcs,
ctx.attr.hdrs,
ctx.attr.deps,
ctx.attr.data,
):
for target in runfiles_attr:
transitive_runfiles.append(target[DefaultInfo].default_runfiles)
runfiles = runfiles.merge_all(transitive_runfiles)
return [
DefaultInfo(..., runfiles = runfiles),
...
]
Penyedia kustom
Penyedia dapat ditentukan menggunakan fungsi provider
untuk menyampaikan informasi khusus aturan:
ExampleInfo = provider(
"Info needed to compile/link Example code.",
fields={
"headers": "depset of header Files from transitive dependencies.",
"files_to_link": "depset of Files from compilation.",
})
Fungsi implementasi aturan kemudian dapat membuat dan menampilkan instance penyedia:
def _example_library_impl(ctx):
...
return [
...
ExampleInfo(
headers = headers,
files_to_link = depset(
[output_file],
transitive = [
dep[ExampleInfo].files_to_link for dep in ctx.attr.deps
],
),
)
]
Inisialisasi kustom penyedia
Anda dapat melindungi pembuatan instance penyedia dengan logika prapemrosesan dan validasi kustom. Hal ini dapat digunakan untuk memastikan bahwa semua instance penyedia mematuhi invarian tertentu, atau memberi pengguna API yang lebih bersih untuk untuk mendapatkan instance.
Hal ini dilakukan dengan meneruskan callback init
ke
Fungsi provider
. Jika callback ini diberikan,
jenis nilai yang ditampilkan provider()
akan berubah menjadi tuple dari dua nilai: simbol
penyedia yang merupakan nilai yang ditampilkan biasa saat init
tidak digunakan, dan "konstruktor
mentah".
Dalam hal ini, saat simbol penyedia dipanggil, simbol tersebut akan meneruskan argumen ke callback init
, bukan langsung menampilkan
instance baru. Nilai
yang ditampilkan callback harus berupa dict yang memetakan nama kolom (string) ke nilai;
ini digunakan untuk melakukan inisialisasi kolom instance baru. Perhatikan bahwa
callback dapat memiliki tanda tangan apa pun, dan jika argumen tidak cocok dengan tanda tangan,
error akan dilaporkan seolah-olah callback dipanggil secara langsung.
Sebaliknya, konstruktor mentah akan mengabaikan callback init
.
Contoh berikut menggunakan init
untuk memproses dan memvalidasi argumennya:
# //pkg:exampleinfo.bzl
_core_headers = [...] # private constant representing standard library files
# It's possible to define an init accepting positional arguments, but
# keyword-only arguments are preferred.
def _exampleinfo_init(*, files_to_link, headers = None, allow_empty_files_to_link = False):
if not files_to_link and not allow_empty_files_to_link:
fail("files_to_link may not be empty")
all_headers = depset(_core_headers, transitive = headers)
return {'files_to_link': files_to_link, 'headers': all_headers}
ExampleInfo, _new_exampleinfo = provider(
...
init = _exampleinfo_init)
export ExampleInfo
Implementasi aturan kemudian dapat membuat instance penyedia sebagai berikut:
ExampleInfo(
files_to_link=my_files_to_link, # may not be empty
headers = my_headers, # will automatically include the core headers
)
Konstruktor mentah dapat digunakan untuk menentukan fungsi factory publik alternatif
yang tidak melalui logika init
. Misalnya, dalam exampleinfo.bzl kita
dapat menentukan:
def make_barebones_exampleinfo(headers):
"""Returns an ExampleInfo with no files_to_link and only the specified headers."""
return _new_exampleinfo(files_to_link = depset(), headers = all_headers)
Biasanya, konstruktor mentah terikat dengan variabel yang namanya diawali dengan garis bawah (_new_exampleinfo
di atas), sehingga kode pengguna tidak dapat memuat dan membuat instance penyedia arbitrer.
Penggunaan lain untuk init
adalah hanya mencegah pengguna memanggil penyedia
simbol sama sekali, dan memaksa mereka untuk
menggunakan fungsi {i>factory<i} sebagai gantinya:
def _exampleinfo_init_banned(*args, **kwargs):
fail("Do not call ExampleInfo(). Use make_exampleinfo() instead.")
ExampleInfo, _new_exampleinfo = provider(
...
init = _exampleinfo_init_banned)
def make_exampleinfo(...):
...
return _new_exampleinfo(...)
Aturan yang dapat dijalankan dan aturan pengujian
Aturan yang dapat dieksekusi menentukan target yang dapat dipanggil oleh perintah bazel run
.
Aturan pengujian adalah jenis aturan khusus
yang dapat dieksekusi yang targetnya juga
dipanggil oleh perintah bazel test
. Aturan yang dapat dijalankan
dan pengujian dibuat oleh
menetapkan executable
atau
Argumen test
ke True
dalam panggilan ke rule
:
example_binary = rule(
implementation = _example_binary_impl,
executable = True,
...
)
example_test = rule(
implementation = _example_binary_impl,
test = True,
...
)
Aturan pengujian harus memiliki nama yang diakhiri dengan _test
. (Nama target pengujian juga sering kali
berakhiran _test
menurut konvensi, tetapi ini tidak wajib.) Aturan non-pengujian tidak boleh
memiliki akhiran ini.
Kedua jenis aturan tersebut harus menghasilkan file output yang dapat dieksekusi (yang mungkin atau tidak
dideklarasikan sebelumnya) yang akan dipanggil oleh perintah run
atau test
. Untuk memberitahu
Bazel {i>output<i} aturan mana yang akan digunakan
sebagai {i>executable<i} ini, teruskan sebagai
Argumen executable
dari DefaultInfo
yang ditampilkan
penyedia layanan. executable
tersebut ditambahkan ke output default aturan (sehingga Anda
tidak perlu meneruskannya ke executable
dan files
). executable
juga secara implisit
ditambahkan ke runfile:
def _example_binary_impl(ctx):
executable = ctx.actions.declare_file(ctx.label.name)
...
return [
DefaultInfo(executable = executable, ...),
...
]
Tindakan yang menghasilkan file ini harus menetapkan bit yang dapat dieksekusi pada file. Untuk
tindakan ctx.actions.run
atau
ctx.actions.run_shell
, hal ini harus dilakukan
oleh alat pokok yang dipanggil oleh tindakan. Untuk tindakan
ctx.actions.write
, teruskan is_executable=True
.
Sebagai perilaku lama, aturan yang dapat dieksekusi memiliki
output khusus ctx.outputs.executable
yang telah dideklarasikan sebelumnya. File ini berfungsi sebagai
default yang dapat dieksekusi jika Anda tidak menentukannya menggunakan DefaultInfo
; tidak boleh
digunakan sebaliknya. Mekanisme output ini tidak digunakan lagi karena tidak mendukung
penyesuaian nama file yang dapat dieksekusi pada waktu analisis.
Lihat contoh aturan yang dapat dieksekusi dan aturan pengujian.
Aturan yang dapat dijalankan dan aturan pengujian memiliki didefinisikan secara implisit, selain yang ditambahkan untuk semua aturan. Default atribut yang ditambahkan secara implisit tidak dapat diubah, meskipun hal ini dapat diatasi dengan menggabungkan aturan pribadi dalam makro Starlark yang mengubah default:
def example_test(size="small", **kwargs):
_example_test(size=size, **kwargs)
_example_test = rule(
...
)
Lokasi runfile
Saat target yang dapat dieksekusi dijalankan dengan bazel run
(atau test
), root direktori
runfile berdekatan dengan file yang dapat dieksekusi. Jalur tersebut berhubungan sebagai berikut:
# Given launcher_path and runfile_file:
runfiles_root = launcher_path.path + ".runfiles"
workspace_name = ctx.workspace_name
runfile_path = runfile_file.short_path
execution_root_relative_path = "%s/%s/%s" % (
runfiles_root, workspace_name, runfile_path)
Jalur ke File
di direktori runfiles sesuai dengan
File.short_path
.
Biner yang dieksekusi langsung oleh bazel
berdekatan dengan root direktori
runfiles
. Akan tetapi, biner yang disebut dari runfile tidak dapat membuat
asumsi yang sama. Untuk mengurangi hal ini, setiap biner harus menyediakan cara untuk
menerima root runfile-nya sebagai parameter menggunakan argumen/flag
lingkungan atau command line. Ini memungkinkan biner meneruskan root runfile kanonis yang benar
ke kode biner yang dipanggilnya. Jika tidak ditetapkan, biner dapat menebak bahwa ini adalah
biner pertama yang dipanggil dan mencari direktori runfile yang berdekatan.
Topik lanjutan
Meminta file output
Satu target dapat memiliki beberapa file output. Saat perintah bazel build
berjalan, beberapa {i>output<i} dari target
yang diberikan ke perintah itu dianggap
diminta. Bazel hanya mem-build file yang diminta ini dan file yang
menjadi dependensinya secara langsung atau tidak langsung. (Dalam hal grafik aksi, Bazel hanya
menjalankan tindakan yang dapat dijangkau sebagai dependensi transitif dari
file yang diminta.)
Selain output default, setiap output yang dideklarasikan sebelumnya dapat
secara eksplisit diminta pada baris perintah. Aturan dapat menentukan
output melalui atribut output. Dalam hal ini, pengguna secara eksplisit memilih label untuk output saat membuat instance aturan. Untuk mendapatkan
File
untuk atribut output, gunakan atribut
dari ctx.outputs
. Aturan juga dapat
menentukan output yang telah dideklarasikan sebelumnya secara implisit berdasarkan
nama target, tetapi fitur ini tidak digunakan lagi.
Selain output default, ada grup output, yang merupakan koleksi
{i>output file<i} yang mungkin
diminta bersama. Permintaan ini dapat diminta dengan
--output_groups
Misalnya,
jika target //pkg:mytarget
adalah jenis aturan yang memiliki grup output
debug_files
, file ini dapat dibuat dengan menjalankan bazel build //pkg:mytarget
--output_groups=debug_files
. Karena {i>output<i} yang tidak dideklarasikan tidak memiliki label,
permintaan hanya dapat diminta dengan muncul di output default atau output
ras.
Grup output dapat ditentukan dengan
Penyedia OutputGroupInfo
. Perhatikan bahwa tidak seperti banyak
penyedia bawaan, OutputGroupInfo
dapat mengambil parameter dengan nama arbitrer
untuk menentukan grup output dengan nama tersebut:
def _example_library_impl(ctx):
...
debug_file = ctx.actions.declare_file(name + ".pdb")
...
return [
DefaultInfo(files = depset([output_file]), ...),
OutputGroupInfo(
debug_files = depset([debug_file]),
all_files = depset([output_file, debug_file]),
),
...
]
Selain itu, tidak seperti sebagian besar penyedia, OutputGroupInfo
dapat ditampilkan oleh
aspek dan target aturan tempat aspek tersebut diterapkan, selama
aspek dan target aturan tidak menentukan grup output yang sama. Dalam hal ini, penyedia yang dihasilkan
akan digabungkan.
Perhatikan bahwa OutputGroupInfo
umumnya tidak boleh digunakan untuk menyampaikan jenis file tertentu
dari target ke tindakan konsumennya. Sebagai gantinya, tentukan
penyedia khusus aturan untuk hal tersebut.
Konfigurasi
Bayangkan Anda ingin membangun biner C++ untuk arsitektur yang berbeda. Build dapat bersifat kompleks dan melibatkan beberapa langkah. Beberapa biner menengah, seperti compiler dan generator kode, harus berjalan di platform eksekusi (yang dapat berupa host Anda, atau eksekutor jarak jauh). Beberapa biner seperti {i>output<i} akhir harus dibangun untuk arsitektur target.
Oleh karena itu, Bazel memiliki konsep "konfigurasi" dan transisi. Tujuan target paling atas (yang diminta di baris perintah) dibangun di "target" konfigurasi sementara alat yang harus berjalan pada platform eksekusi dibangun dalam {i>exec<i} konfigurasi Anda. Aturan dapat menghasilkan tindakan yang berbeda berdasarkan pada konfigurasi, misalnya untuk mengubah arsitektur {i>cpu<i} yang diteruskan ke compiler. Dalam beberapa kasus, library yang sama mungkin diperlukan untuk konfigurasi yang berbeda. Jika hal ini terjadi, kode akan dianalisis dan berpotensi di-build beberapa kali.
Secara default, Bazel mem-build dependensi target dalam konfigurasi yang sama dengan target itu sendiri, dengan kata lain tanpa transisi. Jika dependensi adalah alat yang diperlukan untuk membantu mem-build target, atribut yang sesuai harus menentukan transisi ke konfigurasi exec. Hal ini menyebabkan alat dan semua dependensinya di-build untuk platform eksekusi.
Untuk setiap atribut dependensi, Anda dapat menggunakan cfg
untuk menentukan apakah dependensi
harus membangun dalam konfigurasi yang sama
atau transisi ke konfigurasi exec.
Jika atribut dependensi memiliki flag executable=True
, cfg
harus ditetapkan
secara eksplisit. Hal ini untuk mencegah terjadinya kesalahan
pembuatan alat secara tidak sengaja
konfigurasi Anda.
Lihat contoh
Secara umum, sumber, library dependen, dan file yang dapat dieksekusi yang akan diperlukan saat runtime dapat menggunakan konfigurasi yang sama.
Alat yang dijalankan sebagai bagian dari build (seperti compiler atau generator kode)
harus dibuat untuk
konfigurasi exec. Dalam hal ini, tentukan cfg="exec"
dalam
atribut.
Jika tidak, file yang dapat dieksekusi yang digunakan saat runtime (seperti bagian dari pengujian) harus
dibangun untuk konfigurasi target. Dalam hal ini, tentukan cfg="target"
dalam
atribut.
cfg="target"
sebenarnya tidak melakukan apa pun: ini hanya nilai kenyamanan untuk
membantu desainer aturan
untuk menjelaskan niat mereka secara eksplisit. Jika executable=False
,
yang berarti cfg
bersifat opsional, hanya tetapkan ini jika benar-benar membantu keterbacaan.
Anda juga dapat menggunakan cfg=my_transition
untuk menggunakan
transisi yang ditentukan pengguna, yang memungkinkan
penulis aturan memiliki fleksibilitas yang besar dalam mengubah konfigurasi, dengan
kelemahan
membuat grafik build lebih besar dan kurang dapat dipahami.
Catatan: Secara historis, Bazel tidak memiliki konsep platform eksekusi, dan sebagai gantinya, semua tindakan build dianggap berjalan di mesin host. Roti Bazel sebelum 6.0 membuat "host" yang berbeda untuk mewakilinya. Jika Anda melihat referensi ke "{i>host<i}" dalam kode atau dokumentasi lama, itulah yang pengguna. Sebaiknya gunakan Bazel 6.0 atau yang lebih baru untuk menghindari overhead konseptual tambahan ini.
Fragmen konfigurasi
Aturan dapat mengakses
fragmen konfigurasi seperti
cpp
, java
, dan jvm
. Namun, semua fragmen yang diperlukan harus dideklarasikan
untuk menghindari error akses:
def _impl(ctx):
# Using ctx.fragments.cpp leads to an error since it was not declared.
x = ctx.fragments.java
...
my_rule = rule(
implementation = _impl,
fragments = ["java"], # Required fragments of the target configuration
host_fragments = ["java"], # Required fragments of the host configuration
...
)
Runfiles symlink
Biasanya, jalur relatif file di hierarki runfiles sama dengan
jalur relatif file itu dalam pohon sumber
atau pohon {i>output<i} yang dihasilkan. Jika argumen ini
harus berbeda karena alasan tertentu, Anda dapat menentukan argumen root_symlinks
atau
symlinks
. root_symlinks
adalah kamus yang memetakan jalur ke
file, dengan jalur yang relatif terhadap root direktori runfile. Tujuan
Kamus symlinks
sama, tetapi jalur secara implisit diawali dengan
nama ruang kerja utama (bukan nama repositori yang berisi
target saat ini).
...
runfiles = ctx.runfiles(
root_symlinks = {"some/path/here.foo": ctx.file.some_data_file2}
symlinks = {"some/path/here.bar": ctx.file.some_data_file3}
)
# Creates something like:
# sometarget.runfiles/
# some/
# path/
# here.foo -> some_data_file2
# <workspace_name>/
# some/
# path/
# here.bar -> some_data_file3
Jika symlinks
atau root_symlinks
digunakan, berhati-hatilah agar tidak memetakan dua
file ke jalur yang sama di hierarki runfiles. Tindakan ini akan menyebabkan build gagal
dengan kesalahan yang
menjelaskan konflik. Untuk memperbaikinya, Anda perlu mengubah
Argumen ctx.runfiles
untuk menghilangkan tabrakan. Pemeriksaan ini akan
dilakukan untuk
semua target yang menggunakan aturan Anda, serta target apa pun yang bergantung pada
target. Hal ini sangat berisiko jika alat Anda cenderung digunakan secara transitif
oleh alat lain; nama symlink harus unik di seluruh runfile alat dan
semua dependensinya.
Cakupan kode
Saat perintah coverage
dijalankan,
mungkin perlu menambahkan instrumentasi cakupan
untuk target tertentu. Tujuan
juga mengumpulkan daftar file sumber yang diinstrumentasikan. Subset dari
target yang dianggap dikontrol oleh tanda
--instrumentation_filter
Target pengujian dikecualikan, kecuali jika
--instrument_test_targets
ditentukan.
Jika implementasi aturan menambahkan instrumentasi cakupan pada waktu build, implementasi tersebut perlu memperhitungkan hal itu dalam fungsi implementasinya. ctx.coverage_instrumented menampilkan nilai benar dalam mode cakupan jika sumber target harus diinstrumentasikan:
# Are this rule's sources instrumented?
if ctx.coverage_instrumented():
# Do something to turn on coverage for this compile action
Logika yang harus selalu aktif dalam mode cakupan (apakah sumber target yang secara khusus diinstrumentasikan atau tidak) dapat ditentukan berdasarkan ctx.configuration.coverage_enabled.
Jika aturan secara langsung menyertakan sumber dari dependensinya sebelum kompilasi (seperti file header), mungkin juga perlu mengaktifkan instrumentasi waktu kompilasi jika dependensi' sumber harus diinstrumentasikan:
# Are this rule's sources or any of the sources for its direct dependencies
# in deps instrumented?
if (ctx.configuration.coverage_enabled and
(ctx.coverage_instrumented() or
any([ctx.coverage_instrumented(dep) for dep in ctx.attr.deps]))):
# Do something to turn on coverage for this compile action
Aturan juga harus menyediakan informasi tentang atribut mana yang relevan dengan
cakupan dengan penyedia InstrumentedFilesInfo
, yang dibuat menggunakan
coverage_common.instrumented_files_info
.
Parameter dependency_attributes
dari instrumented_files_info
harus mencantumkan
semua atribut dependensi runtime, termasuk dependensi kode seperti deps
dan
dependensi data seperti data
. Parameter source_attributes
harus mencantumkan
atribut file sumber aturan jika instrumentasi cakupan mungkin ditambahkan:
def _example_library_impl(ctx):
...
return [
...
coverage_common.instrumented_files_info(
ctx,
dependency_attributes = ["deps", "data"],
# Omitted if coverage is not supported for this rule:
source_attributes = ["srcs", "hdrs"],
)
...
]
Jika InstrumentedFilesInfo
tidak ditampilkan, InstrumentedFilesInfo
default akan dibuat dengan setiap
atribut dependensi non-alat yang tidak menetapkan
cfg
ke "host"
atau "exec"
dalam skema atribut) di
dependency_attributes
. (Ini bukan perilaku yang ideal, karena menempatkan atribut
seperti srcs
di dependency_attributes
, bukan source_attributes
, tetapi
menghindari perlunya konfigurasi cakupan eksplisit untuk semua aturan dalam
rantai dependensi.)
Tindakan Validasi
Terkadang Anda perlu memvalidasi sesuatu tentang build, dan informasi yang diperlukan untuk melakukan validasi itu hanya tersedia dalam artefak (file sumber atau file yang dihasilkan). Karena informasi ini ada dalam artefak, aturan tidak dapat melakukan validasi ini pada waktu analisis karena aturan tidak dapat membaca file. Sebagai gantinya, tindakan harus melakukan validasi ini pada waktu eksekusi. Jika validasi gagal, tindakan akan gagal, sehingga build juga akan gagal.
Contoh validasi yang mungkin dijalankan adalah analisis statis, analisis lint, pemeriksaan dependensi dan konsistensi, dan pemeriksaan gaya.
Tindakan validasi juga dapat membantu meningkatkan performa build dengan memindahkan bagian tindakan yang tidak diperlukan untuk membangun artefak menjadi tindakan terpisah. Misalnya, jika satu tindakan yang melakukan kompilasi dan linting dapat dipisahkan menjadi tindakan kompilasi dan tindakan linting, tindakan linting dapat dijalankan sebagai tindakan validasi dan dijalankan secara paralel dengan tindakan lainnya.
"Tindakan validasi" ini sering kali tidak menghasilkan apa pun yang digunakan di tempat lain dalam build, karena mereka hanya perlu menegaskan hal-hal tentang input mereka. Ini menimbulkan masalah: Jika tindakan validasi tidak menghasilkan apa pun yang digunakan di tempat lain dalam build, bagaimana cara aturan menjalankan tindakan? Secara historis, pendekatannya adalah membuat tindakan validasi menghasilkan file kosong, dan menambahkan output tersebut secara artifisial ke input beberapa tindakan penting lainnya dalam build:
Ini berhasil, karena Bazel akan selalu menjalankan tindakan validasi saat kompilasi dijalankan, tetapi ini memiliki kelemahan yang signifikan:
Tindakan validasi berada di jalur kritis build. Karena Bazel berpikir bahwa {i>output<i} kosong diperlukan untuk menjalankan tindakan kompilasi, ia akan menjalankan tindakan validasi terlebih dahulu, meskipun tindakan kompilasi akan mengabaikan input. Tindakan ini akan mengurangi paralelisme dan memperlambat build.
Jika tindakan lain dalam build mungkin berjalan, bukan tindakan kompilasi, output kosong dari tindakan validasi juga harus ditambahkan ke tindakan tersebut (misalnya, output jar sumber
java_library
). Hal ini juga menjadi masalah jika tindakan baru yang mungkin berjalan, bukan tindakan kompilasi, ditambahkan nanti, dan output validasi kosong tidak sengaja dihapus.
Solusi untuk masalah ini adalah menggunakan Grup Output Validasi.
Grup Output Validasi
Grup Output Validasi adalah grup output yang dirancang untuk menyimpan {i>output<i} yang tidak digunakan dari tindakan validasi, sehingga mereka tidak perlu ditambahkan ke input tindakan lain.
Grup ini bersifat khusus karena output-nya selalu diminta, terlepas dari
nilai tanda --output_groups
, dan terlepas dari bagaimana target
diperlukan (misalnya, di command line, sebagai dependensi, atau melalui
output implisit target). Perlu diperhatikan bahwa caching dan inkrementalitas normal
masih berlaku: jika input ke tindakan validasi belum berubah dan
tindakan validasi sebelumnya berhasil, maka tindakan validasi tidak akan
akan dijalankan.
Menggunakan grup {i>output<i} ini masih membutuhkan tindakan validasi yang menghasilkan beberapa file, bahkan yang kosong. Hal ini mungkin memerlukan penggabungan beberapa alat yang biasanya tidak membuat output sehingga file dibuat.
Tindakan validasi target tidak berjalan dalam tiga kasus:
- Saat target bergantung pada alat
- Ketika target dijadikan dependensi sebagai dependensi implisit (misalnya, atribut yang diawali dengan "_")
- Saat target di-build di konfigurasi host atau exec.
Diasumsikan bahwa target ini memiliki build dan pengujian terpisah yang akan menemukan kegagalan validasi.
Menggunakan Grup Output Validasi
Grup Output Validasi diberi nama _validation
dan digunakan seperti yang lainnya
grup output:
def _rule_with_validation_impl(ctx):
ctx.actions.write(ctx.outputs.main, "main output\n")
ctx.actions.write(ctx.outputs.implicit, "implicit output\n")
validation_output = ctx.actions.declare_file(ctx.attr.name + ".validation")
ctx.actions.run(
outputs = [validation_output],
executable = ctx.executable._validation_tool,
arguments = [validation_output.path])
return [
DefaultInfo(files = depset([ctx.outputs.main])),
OutputGroupInfo(_validation = depset([validation_output])),
]
rule_with_validation = rule(
implementation = _rule_with_validation_impl,
outputs = {
"main": "%{name}.main",
"implicit": "%{name}.implicit",
},
attrs = {
"_validation_tool": attr.label(
default = Label("//validation_actions:validation_tool"),
executable = True,
cfg = "exec"),
}
)
Perhatikan bahwa file output validasi tidak ditambahkan ke DefaultInfo
atau
input ke tindakan lainnya. Tindakan validasi untuk target jenis aturan ini
akan tetap berjalan jika target bergantung pada label, atau parameter
output implisit bergantung secara langsung atau tidak langsung.
Biasanya, output tindakan validasi hanya masuk ke grup output validasi, dan tidak ditambahkan ke input tindakan lain, karena hal ini dapat mengalahkan peningkatan paralelisme. Namun, perlu diketahui bahwa Bazel saat ini memiliki pemeriksaan khusus untuk menegakkan ini. Oleh karena itu, Anda harus menguji bahwa output tindakan validasi tidak ditambahkan ke input tindakan apa pun dalam tes untuk aturan Starlark. Contoh:
load("@bazel_skylib//lib:unittest.bzl", "analysistest")
def _validation_outputs_test_impl(ctx):
env = analysistest.begin(ctx)
actions = analysistest.target_actions(env)
target = analysistest.target_under_test(env)
validation_outputs = target.output_groups._validation.to_list()
for action in actions:
for validation_output in validation_outputs:
if validation_output in action.inputs.to_list():
analysistest.fail(env,
"%s is a validation action output, but is an input to action %s" % (
validation_output, action))
return analysistest.end(env)
validation_outputs_test = analysistest.make(_validation_outputs_test_impl)
Tanda Tindakan Validasi
Menjalankan tindakan validasi dikontrol oleh command line --run_validations
, yang secara default disetel ke benar (true).
Fitur yang tidak digunakan lagi
Output yang tidak digunakan lagi
Ada dua cara yang tidak digunakan lagi untuk menggunakan output yang telah dideklarasikan sebelumnya:
Parameter
outputs
darirule
menentukan pemetaan antara nama atribut output dan template string untuk membuat label output yang telah dideklarasikan sebelumnya. Lebih memilih menggunakan output yang tidak dideklarasikan sebelumnya dan menambahkan output secara eksplisit keDefaultInfo.files
. Gunakan label sebagai input untuk aturan yang menggunakan output, bukan di label output.Untuk aturan yang dapat dieksekusi,
ctx.outputs.executable
merujuk ke output yang dapat dieksekusi yang telah dideklarasikan sebelumnya dengan nama yang sama dengan target aturan. Sebaiknya deklarasikan output secara eksplisit, misalnya denganctx.actions.declare_file(ctx.label.name)
, dan pastikan perintah yang membuat file yang dapat dieksekusi menetapkan izinnya untuk mengizinkan eksekusi. Eksplisit teruskan output yang dapat dieksekusi ke parameterexecutable
dariDefaultInfo
.
Fitur runfile yang harus dihindari
Jenis ctx.runfiles
dan runfiles
memiliki kumpulan fitur yang kompleks, banyak di antaranya dipertahankan karena alasan lama.
Rekomendasi berikut membantu mengurangi kerumitan:
Hindari penggunaan mode
collect_data
dancollect_default
ctx.runfiles
. Mode ini secara implisit mengumpulkan di tepi dependensi hardcode tertentu dengan cara yang membingungkan. Sebagai gantinya, tambahkan file menggunakan parameterfiles
atautransitive_files
darictx.runfiles
, atau dengan menggabungkan runfile dari dependensi denganrunfiles = runfiles.merge(dep[DefaultInfo].default_runfiles)
.Hindari penggunaan
data_runfiles
dandefault_runfiles
dari konstruktorDefaultInfo
. TentukanDefaultInfo(runfiles = ...)
sebagai gantinya. Perbedaan antara "default" dan "data" {i>runfile<i} dipertahankan untuk alasan lama. Misalnya, beberapa aturan menempatkan output defaultnya didata_runfiles
, tetapi tidak didefault_runfiles
. Daripada menggunakandata_runfiles
, aturan harus baik menyertakan output default dan juga menggabungkannyadefault_runfiles
dari atribut yang menyediakan runfile (sering kalidata
).Saat mengambil
runfiles
dariDefaultInfo
(umumnya hanya untuk menggabungkan runfile antara aturan saat ini dan dependensinya), gunakanDefaultInfo.default_runfiles
, bukanDefaultInfo.data_runfiles
.
Bermigrasi dari penyedia lama
Sebelumnya, penyedia Bazel adalah kolom sederhana pada objek Target
. Mereka
diakses menggunakan operator titik, dan mereka dibuat dengan meletakkan kolom
dalam struct yang ditampilkan oleh fungsi implementasi aturan.
Gaya ini tidak digunakan lagi dan tidak boleh digunakan dalam kode baru; lihat di bawah untuk informasi yang dapat membantu Anda bermigrasi. Mekanisme penyedia baru menghindari penggunaan nama bentrokan besar. API ini juga mendukung penyembunyian data, dengan mewajibkan kode apa pun yang mengakses instance penyedia untuk mengambilnya menggunakan simbol penyedia.
Untuk saat ini, penyedia lama masih didukung. Aturan dapat menampilkan penyedia lama dan modern sebagai berikut:
def _old_rule_impl(ctx):
...
legacy_data = struct(x="foo", ...)
modern_data = MyInfo(y="bar", ...)
# When any legacy providers are returned, the top-level returned value is a
# struct.
return struct(
# One key = value entry for each legacy provider.
legacy_info = legacy_data,
...
# Additional modern providers:
providers = [modern_data, ...])
Jika dep
adalah objek Target
yang dihasilkan untuk instance aturan ini,
penyedia dan kontennya dapat diambil sebagai dep.legacy_info.x
dan
dep[MyInfo].y
.
Selain providers
, struct yang ditampilkan juga dapat menggunakan beberapa kolom
lain yang memiliki arti khusus (sehingga tidak membuat penyedia
lama yang sesuai):
Kolom
files
,runfiles
,data_runfiles
,default_runfiles
, danexecutable
sesuai dengan kolom bernama sama diDefaultInfo
. Anda tidak diizinkan untuk menentukan salah satu kolom ini sekaligus menampilkan penyediaDefaultInfo
.Kolom
output_groups
mengambil nilai struct dan sesuai denganOutputGroupInfo
.
Di provides
deklarasi aturan, dan di
providers
deklarasi dependensi
penyedia lama diteruskan sebagai string dan penyedia modern
yang diteruskan oleh simbol *Info
-nya. Pastikan untuk mengubah dari string menjadi simbol
saat bermigrasi. Untuk kumpulan aturan yang kompleks atau besar yang sulit diperbarui
semua aturan secara menyeluruh, Anda mungkin lebih
mudah jika mengikuti urutan
langkah:
Ubah aturan yang menghasilkan penyedia lama untuk menghasilkan penyedia lama dan modern, menggunakan sintaksis di atas. Untuk aturan yang mendeklarasikan bahwa mereka menampilkan penyedia lama, perbarui deklarasi tersebut untuk menyertakan penyedia lama dan modern.
Ubah aturan yang menggunakan penyedia lama untuk menggunakan penyedia modern. Jika ada deklarasi atribut yang memerlukan penyedia lama, perbarui juga deklarasi tersebut agar memerlukan penyedia modern. Secara opsional, Anda dapat menyisipkan pekerjaan ini dengan langkah 1, dengan meminta konsumen menyetujui/mewajibkan provider: Menguji keberadaan penyedia lama menggunakan
hasattr(target, 'foo')
, atau penyedia baru yang menggunakanFooInfo in target
.Hapus sepenuhnya penyedia lama dari semua aturan.