Mengoptimalkan Performa

Laporkan masalah Lihat sumber Nightly · 7.4 .

Saat menulis aturan, masalah performa yang paling umum adalah menjelajahi atau menyalin data yang diakumulasikan dari dependensi. Jika digabungkan di seluruh build, operasi ini dapat dengan mudah menghabiskan waktu atau ruang O(N^2). Untuk menghindari hal ini, Anda harus memahami cara menggunakan depset secara efektif.

Hal ini mungkin sulit dilakukan dengan benar, sehingga Bazel juga menyediakan profiler memori yang membantu Anda menemukan tempat Anda mungkin melakukan kesalahan. Perhatikan: Biaya penulisan aturan yang tidak efisien mungkin tidak terlihat sampai aturan tersebut digunakan secara luas.

Menggunakan depset

Setiap kali menggabungkan informasi dari dependensi aturan, Anda harus menggunakan depsets. Hanya gunakan daftar atau kamus biasa untuk memublikasikan informasi lokal ke aturan saat ini.

Depset merepresentasikan informasi sebagai grafik bertingkat yang memungkinkan berbagi.

Pertimbangkan grafik berikut:

C -> B -> A
D ---^

Setiap node memublikasikan satu string. Dengan depset, data akan terlihat seperti ini:

a = depset(direct=['a'])
b = depset(direct=['b'], transitive=[a])
c = depset(direct=['c'], transitive=[b])
d = depset(direct=['d'], transitive=[b])

Perhatikan bahwa setiap item hanya disebutkan satu kali. Dengan daftar, Anda akan mendapatkan ini:

a = ['a']
b = ['b', 'a']
c = ['c', 'b', 'a']
d = ['d', 'b', 'a']

Perhatikan bahwa dalam hal ini 'a' disebutkan empat kali. Dengan grafik yang lebih besar, masalah ini akan semakin memburuk.

Berikut adalah contoh penerapan aturan yang menggunakan depset dengan benar untuk memublikasikan informasi transitif. Perhatikan bahwa Anda dapat memublikasikan informasi lokal aturan menggunakan daftar jika mau karena ini bukan O(N^2).

MyProvider = provider()

def _impl(ctx):
  my_things = ctx.attr.things
  all_things = depset(
      direct=my_things,
      transitive=[dep[MyProvider].all_things for dep in ctx.attr.deps]
  )
  ...
  return [MyProvider(
    my_things=my_things,  # OK, a flat list of rule-local things only
    all_things=all_things,  # OK, a depset containing dependencies
  )]

Lihat halaman ringkasan depset untuk informasi selengkapnya.

Menghindari memanggil depset.to_list()

Anda dapat memaksa depset ke daftar datar menggunakan to_list(), tetapi melakukannya biasanya menghasilkan biaya O(N^2). Jika memungkinkan, hindari penyederhanaan depset kecuali untuk tujuan proses debug.

Kesalahpahaman umum adalah Anda dapat meratakan depset secara bebas jika hanya melakukannya di target tingkat atas, seperti aturan <xx>_binary, karena biaya tidak diakumulasikan di setiap tingkat grafik build. Namun, ini masih O(N^2) saat Anda mem-build sekumpulan target dengan dependensi yang tumpang-tindih. Hal ini terjadi saat mem-build //foo/tests/... pengujian, atau saat mengimpor project IDE.

Mengurangi jumlah panggilan ke depset

Memanggil depset di dalam loop sering kali merupakan kesalahan. Hal ini dapat menyebabkan depset dengan nesting yang sangat dalam, yang berperforma buruk. Contoh:

x = depset()
for i in inputs:
    # Do not do that.
    x = depset(transitive = [x, i.deps])

Kode ini dapat diganti dengan mudah. Pertama, kumpulkan depset transitif dan gabungkan semuanya sekaligus:

transitive = []

for i in inputs:
    transitive.append(i.deps)

x = depset(transitive = transitive)

Hal ini terkadang dapat dikurangi menggunakan pemahaman daftar:

x = depset(transitive = [i.deps for i in inputs])

Menggunakan ctx.actions.args() untuk baris perintah

Saat mem-build command line, Anda harus menggunakan ctx.actions.args(). Tindakan ini menunda perluasan depset ke fase eksekusi.

Selain lebih cepat, hal ini akan mengurangi konsumsi memori aturan Anda -- terkadang hingga 90% atau lebih.

Berikut beberapa trik:

  • Meneruskan depset dan daftar secara langsung sebagai argumen, bukan meratakannya sendiri. Nilai ini akan diperluas oleh ctx.actions.args() untuk Anda. Jika Anda memerlukan transformasi pada konten depset, lihat ctx.actions.args#add untuk melihat apakah ada yang sesuai dengan kebutuhan.

  • Apakah Anda meneruskan File#path sebagai argumen? Tidak perlu. Setiap File akan otomatis diubah menjadi jalurnya, yang ditangguhkan hingga waktu ekspansi.

  • Hindari membuat string dengan menggabungkannya. Argumen string terbaik adalah konstanta karena memorinya akan dibagikan di antara semua instance aturan Anda.

  • Jika argumen terlalu panjang untuk command line, objek ctx.actions.args() dapat ditulis secara bersyarat atau tanpa syarat ke file parameter menggunakan ctx.actions.args#use_param_file. Tindakan ini dilakukan di balik layar saat tindakan dijalankan. Jika perlu mengontrol file params secara eksplisit, Anda dapat menulisnya secara manual menggunakan ctx.actions.write.

Contoh:

def _impl(ctx):
  ...
  args = ctx.actions.args()
  file = ctx.declare_file(...)
  files = depset(...)

  # Bad, constructs a full string "--foo=<file path>" for each rule instance
  args.add("--foo=" + file.path)

  # Good, shares "--foo" among all rule instances, and defers file.path to later
  # It will however pass ["--foo", <file path>] to the action command line,
  # instead of ["--foo=<file_path>"]
  args.add("--foo", file)

  # Use format if you prefer ["--foo=<file path>"] to ["--foo", <file path>]
  args.add(format="--foo=%s", value=file)

  # Bad, makes a giant string of a whole depset
  args.add(" ".join(["-I%s" % file.short_path for file in files])

  # Good, only stores a reference to the depset
  args.add_all(files, format_each="-I%s", map_each=_to_short_path)

# Function passed to map_each above
def _to_short_path(f):
  return f.short_path

Input tindakan transitif harus berupa depset

Saat mem-build tindakan menggunakan ctx.actions.run, jangan lupa bahwa kolom inputs menerima depset. Gunakan ini setiap kali input dikumpulkan dari dependensi secara transitif.

inputs = depset(...)
ctx.actions.run(
  inputs = inputs,  # Do *not* turn inputs into a list
  ...
)

Gantung

Jika Bazel tampaknya berhenti berfungsi, Anda dapat menekan Ctrl-\ atau mengirim sinyal SIGQUIT (kill -3 $(bazel info server_pid)) ke Bazel untuk mendapatkan dump thread dalam file $(bazel info output_base)/server/jvm.out.

Karena Anda mungkin tidak dapat menjalankan bazel info jika bazel berhenti berfungsi, direktori output_base biasanya merupakan induk dari symlink bazel-<workspace> di direktori ruang kerja Anda.

Profiling performa

Bazel menulis profil JSON ke command.profile.gz di basis output secara default. Anda dapat mengonfigurasi lokasi dengan flag --profile, misalnya --profile=/tmp/profile.gz. Lokasi yang diakhiri dengan .gz akan dikompresi dengan GZIP.

Untuk melihat hasilnya, buka chrome://tracing di tab browser Chrome, klik "Muat", lalu pilih file profil (yang mungkin dikompresi). Untuk hasil yang lebih mendetail, klik kotak di pojok kiri bawah.

Anda dapat menggunakan kontrol keyboard ini untuk menavigasi:

  • Tekan 1 untuk mode "pilih". Dalam mode ini, Anda dapat memilih kotak tertentu untuk memeriksa detail peristiwa (lihat sudut kiri bawah). Pilih beberapa peristiwa untuk mendapatkan ringkasan dan statistik gabungan.
  • Tekan 2 untuk mode "geser". Kemudian tarik mouse untuk menggerakkan tampilan. Anda juga dapat menggunakan a/d untuk berpindah ke kiri/kanan.
  • Tekan 3 untuk mode "zoom". Kemudian, tarik mouse untuk melakukan zoom. Anda juga dapat menggunakan w/s untuk memperbesar/memperkecil.
  • Tekan 4 untuk mode "waktu" tempat Anda dapat mengukur jarak antara dua peristiwa.
  • Tekan ? untuk mempelajari semua kontrol.

Informasi profil

Contoh profil:

Contoh profil

Gambar 1. Contoh profil.

Ada beberapa baris khusus:

  • action counters: Menampilkan jumlah tindakan serentak yang sedang berjalan. Klik untuk melihat nilai sebenarnya. Harus naik ke nilai --jobs dalam build bersih.
  • cpu counters: Untuk setiap detik build, menampilkan jumlah CPU yang digunakan oleh Bazel (nilai 1 sama dengan satu core yang 100% sibuk).
  • Critical Path: Menampilkan satu blok untuk setiap tindakan di jalur kritis.
  • grpc-command-1: Thread utama Bazel. Berguna untuk mendapatkan gambaran umum tentang apa yang dilakukan Bazel, misalnya "Launch Bazel", "evaluateTargetPatterns", dan "runAnalysisPhase".
  • Service Thread: Menampilkan jeda Pengumpulan Sampah (GC) minor dan mayor.

Baris lainnya mewakili thread Bazel dan menampilkan semua peristiwa di thread tersebut.

Masalah performa umum

Saat menganalisis profil performa, cari:

  • Fase analisis lebih lambat dari yang diharapkan (runAnalysisPhase), terutama pada build inkremental. Hal ini dapat menjadi tanda implementasi aturan yang buruk, misalnya yang meratakan depset. Pemuatan paket dapat menjadi lambat karena jumlah target, makro kompleks, atau glob rekursif yang berlebihan.
  • Tindakan lambat individual, terutama yang ada di jalur kritis. Anda mungkin dapat membagi tindakan besar menjadi beberapa tindakan yang lebih kecil atau mengurangi kumpulan dependensi (transitif) untuk mempercepatnya. Periksa juga non-PROCESS_TIME tinggi yang tidak biasa (seperti REMOTE_SETUP atau FETCH).
  • Bottleneck, yaitu sejumlah kecil thread sedang sibuk sementara yang lainnya tidak ada aktivitas/menunggu hasil (lihat sekitar 15 detik-30 detik di screenshot di atas). Untuk mengoptimalkan hal ini, kemungkinan besar Anda perlu menyentuh penerapan aturan atau Bazel sendiri untuk menghadirkan lebih banyak paralelisme. Hal ini juga dapat terjadi jika ada jumlah GC yang tidak biasa.

Format file profil

Objek tingkat teratas berisi metadata (otherData) dan data pelacakan sebenarnya (traceEvents). Metadata berisi info tambahan, misalnya ID pemanggilan dan tanggal pemanggilan Bazel.

Contoh:

{
  "otherData": {
    "build_id": "101bff9a-7243-4c1a-8503-9dc6ae4c3b05",
    "date": "Tue Jun 16 08:30:21 CEST 2020",
    "output_base": "/usr/local/google/_bazel_johndoe/573d4be77eaa72b91a3dfaa497bf8cd0"
  },
  "traceEvents": [
    {"name":"thread_name","ph":"M","pid":1,"tid":0,"args":{"name":"Critical Path"}},
    {"cat":"build phase marker","name":"Launch Bazel","ph":"X","ts":-1824000,"dur":1824000,"pid":1,"tid":60},
    ...
    {"cat":"general information","name":"NoSpawnCacheModule.beforeCommand","ph":"X","ts":116461,"dur":419,"pid":1,"tid":60},
    ...
    {"cat":"package creation","name":"src","ph":"X","ts":279844,"dur":15479,"pid":1,"tid":838},
    ...
    {"name":"thread_name","ph":"M","pid":1,"tid":11,"args":{"name":"Service Thread"}},
    {"cat":"gc notification","name":"minor GC","ph":"X","ts":334626,"dur":13000,"pid":1,"tid":11},

    ...
    {"cat":"action processing","name":"Compiling third_party/grpc/src/core/lib/transport/status_conversion.cc","ph":"X","ts":12630845,"dur":136644,"pid":1,"tid":1546}
 ]
}

Stempel waktu (ts) dan durasi (dur) dalam peristiwa rekaman aktivitas diberikan dalam mikrodetik. Kategori (cat) adalah salah satu nilai enum ProfilerTask. Perhatikan bahwa beberapa peristiwa digabungkan jika peristiwa tersebut sangat singkat dan berdekatan; teruskan --noslim_json_profile jika Anda ingin mencegah penggabungan peristiwa.

Lihat juga Spesifikasi Format Peristiwa Rekaman Aktivitas Chrome.

analyze-profile

Metode pembuatan profil ini terdiri dari dua langkah, pertama-tama Anda harus menjalankan build/pengujian dengan flag --profile, misalnya

$ bazel build --profile=/tmp/prof //path/to:target

File yang dihasilkan (dalam hal ini /tmp/prof) adalah file biner, yang dapat diproses pasca-pemrosesan dan dianalisis oleh perintah analyze-profile:

$ bazel analyze-profile /tmp/prof

Secara default, perintah ini akan mencetak informasi analisis ringkasan untuk file data profil yang ditentukan. Hal ini mencakup statistik kumulatif untuk berbagai jenis tugas untuk setiap fase build dan analisis jalur kritis.

Bagian pertama output default adalah ringkasan waktu yang dihabiskan pada berbagai fase build:

INFO: Profile created on Tue Jun 16 08:59:40 CEST 2020, build ID: 0589419c-738b-4676-a374-18f7bbc7ac23, output base: /home/johndoe/.cache/bazel/_bazel_johndoe/d8eb7a85967b22409442664d380222c0

=== PHASE SUMMARY INFORMATION ===

Total launch phase time         1.070 s   12.95%
Total init phase time           0.299 s    3.62%
Total loading phase time        0.878 s   10.64%
Total analysis phase time       1.319 s   15.98%
Total preparation phase time    0.047 s    0.57%
Total execution phase time      4.629 s   56.05%
Total finish phase time         0.014 s    0.18%
------------------------------------------------
Total run time                  8.260 s  100.00%

Critical path (4.245 s):
       Time Percentage   Description
    8.85 ms    0.21%   _Ccompiler_Udeps for @local_config_cc// compiler_deps
    3.839 s   90.44%   action 'Compiling external/com_google_protobuf/src/google/protobuf/compiler/php/php_generator.cc [for host]'
     270 ms    6.36%   action 'Linking external/com_google_protobuf/protoc [for host]'
    0.25 ms    0.01%   runfiles for @com_google_protobuf// protoc
     126 ms    2.97%   action 'ProtoCompile external/com_google_protobuf/python/google/protobuf/compiler/plugin_pb2.py'
    0.96 ms    0.02%   runfiles for //tools/aquery_differ aquery_differ

Profiling memori

Bazel dilengkapi dengan memory profiler bawaan yang dapat membantu Anda memeriksa penggunaan memori aturan. Jika ada masalah, Anda dapat membuang heap untuk menemukan baris kode yang tepat yang menyebabkan masalah.

Mengaktifkan pelacakan memori

Anda harus meneruskan dua flag startup ini ke setiap pemanggilan Bazel:

  STARTUP_FLAGS=\
  --host_jvm_args=-javaagent:$(BAZEL)/third_party/allocation_instrumenter/java-allocation-instrumenter-3.3.0.jar \
  --host_jvm_args=-DRULE_MEMORY_TRACKER=1

Tindakan ini akan memulai server dalam mode pelacakan memori. Jika Anda lupa untuk satu pemanggilan Bazel, server akan dimulai ulang dan Anda harus memulai dari awal.

Menggunakan Pelacak Memori

Sebagai contoh, lihat target foo dan lihat fungsinya. Untuk menjalankan analisis saja dan tidak menjalankan fase eksekusi build, tambahkan flag --nobuild.

$ bazel $(STARTUP_FLAGS) build --nobuild //foo:foo

Selanjutnya, lihat banyaknya memori yang digunakan oleh seluruh instance Bazel:

$ bazel $(STARTUP_FLAGS) info used-heap-size-after-gc
> 2594MB

Pisahkan menurut class aturan menggunakan bazel dump --rules:

$ bazel $(STARTUP_FLAGS) dump --rules
>

RULE                                 COUNT     ACTIONS          BYTES         EACH
genrule                             33,762      33,801    291,538,824        8,635
config_setting                      25,374           0     24,897,336          981
filegroup                           25,369      25,369     97,496,272        3,843
cc_library                           5,372      73,235    182,214,456       33,919
proto_library                        4,140     110,409    186,776,864       45,115
android_library                      2,621      36,921    218,504,848       83,366
java_library                         2,371      12,459     38,841,000       16,381
_gen_source                            719       2,157      9,195,312       12,789
_check_proto_library_deps              719         668      1,835,288        2,552
... (more output)

Lihat ke mana memori akan diarahkan dengan membuat file pprof menggunakan bazel dump --skylark_memory:

$ bazel $(STARTUP_FLAGS) dump --skylark_memory=$HOME/prof.gz
> Dumping Starlark heap to: /usr/local/google/home/$USER/prof.gz

Gunakan alat pprof untuk menyelidiki heap. Titik awal yang baik adalah mendapatkan grafik flame dengan menggunakan pprof -flame $HOME/prof.gz.

Dapatkan pprof dari https://github.com/google/pprof.

Dapatkan dump teks dari situs panggilan terpopuler yang dianotasi dengan baris:

$ pprof -text -lines $HOME/prof.gz
>
      flat  flat%   sum%        cum   cum%
  146.11MB 19.64% 19.64%   146.11MB 19.64%  android_library <native>:-1
  113.02MB 15.19% 34.83%   113.02MB 15.19%  genrule <native>:-1
   74.11MB  9.96% 44.80%    74.11MB  9.96%  glob <native>:-1
   55.98MB  7.53% 52.32%    55.98MB  7.53%  filegroup <native>:-1
   53.44MB  7.18% 59.51%    53.44MB  7.18%  sh_test <native>:-1
   26.55MB  3.57% 63.07%    26.55MB  3.57%  _generate_foo_files /foo/tc/tc.bzl:491
   26.01MB  3.50% 66.57%    26.01MB  3.50%  _build_foo_impl /foo/build_test.bzl:78
   22.01MB  2.96% 69.53%    22.01MB  2.96%  _build_foo_impl /foo/build_test.bzl:73
   ... (more output)